You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.2 KiB
219 lines
7.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
Test nn.probability.distribution.Gamma.
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
import mindspore.nn.probability.distribution as msd
|
|
from mindspore import dtype
|
|
from mindspore import Tensor
|
|
|
|
def test_gamma_shape_errpr():
|
|
"""
|
|
Invalid shapes.
|
|
"""
|
|
with pytest.raises(ValueError):
|
|
msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
|
|
|
def test_type():
|
|
with pytest.raises(TypeError):
|
|
msd.Gamma([0.], [1.], dtype=dtype.int32)
|
|
|
|
def test_name():
|
|
with pytest.raises(TypeError):
|
|
msd.Gamma([0.], [1.], name=1.0)
|
|
|
|
def test_seed():
|
|
with pytest.raises(TypeError):
|
|
msd.Gamma([0.], [1.], seed='seed')
|
|
|
|
def test_concentration1():
|
|
with pytest.raises(ValueError):
|
|
msd.Gamma([0.], [1.])
|
|
with pytest.raises(ValueError):
|
|
msd.Gamma([-1.], [1.])
|
|
|
|
def test_concentration0():
|
|
with pytest.raises(ValueError):
|
|
msd.Gamma([1.], [0.])
|
|
with pytest.raises(ValueError):
|
|
msd.Gamma([1.], [-1.])
|
|
|
|
def test_scalar():
|
|
with pytest.raises(TypeError):
|
|
msd.Gamma(3., [4.])
|
|
with pytest.raises(TypeError):
|
|
msd.Gamma([3.], -4.)
|
|
|
|
def test_arguments():
|
|
"""
|
|
args passing during initialization.
|
|
"""
|
|
g = msd.Gamma()
|
|
assert isinstance(g, msd.Distribution)
|
|
g = msd.Gamma([3.0], [4.0], dtype=dtype.float32)
|
|
assert isinstance(g, msd.Distribution)
|
|
|
|
|
|
class GammaProb(nn.Cell):
|
|
"""
|
|
Gamma distribution: initialize with concentration1/concentration0.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaProb, self).__init__()
|
|
self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32)
|
|
|
|
def construct(self, value):
|
|
prob = self.gamma.prob(value)
|
|
log_prob = self.gamma.log_prob(value)
|
|
return prob + log_prob
|
|
|
|
def test_gamma_prob():
|
|
"""
|
|
Test probability functions: passing value through construct.
|
|
"""
|
|
net = GammaProb()
|
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
|
ans = net(value)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
|
|
class GammaProb1(nn.Cell):
|
|
"""
|
|
Gamma distribution: initialize without concentration1/concentration0.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaProb1, self).__init__()
|
|
self.gamma = msd.Gamma()
|
|
|
|
def construct(self, value, concentration1, concentration0):
|
|
prob = self.gamma.prob(value, concentration1, concentration0)
|
|
log_prob = self.gamma.log_prob(value, concentration1, concentration0)
|
|
return prob + log_prob
|
|
|
|
def test_gamma_prob1():
|
|
"""
|
|
Test probability functions: passing concentration1/concentration0, value through construct.
|
|
"""
|
|
net = GammaProb1()
|
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
|
concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32)
|
|
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
|
ans = net(value, concentration1, concentration0)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class GammaKl(nn.Cell):
|
|
"""
|
|
Test class: kl_loss of Gamma distribution.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaKl, self).__init__()
|
|
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
|
self.g2 = msd.Gamma(dtype=dtype.float32)
|
|
|
|
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
|
kl1 = self.g1.kl_loss('Gamma', concentration1_b, concentration0_b)
|
|
kl2 = self.g2.kl_loss('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
|
return kl1 + kl2
|
|
|
|
def test_kl():
|
|
"""
|
|
Test kl_loss.
|
|
"""
|
|
net = GammaKl()
|
|
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
|
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class GammaCrossEntropy(nn.Cell):
|
|
"""
|
|
Test class: cross_entropy of Gamma distribution.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaCrossEntropy, self).__init__()
|
|
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
|
self.g2 = msd.Gamma(dtype=dtype.float32)
|
|
|
|
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
|
h1 = self.g1.cross_entropy('Gamma', concentration1_b, concentration0_b)
|
|
h2 = self.g2.cross_entropy('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
|
return h1 + h2
|
|
|
|
def test_cross_entropy():
|
|
"""
|
|
Test cross entropy between Gamma distributions.
|
|
"""
|
|
net = GammaCrossEntropy()
|
|
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
|
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
|
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class GammaBasics(nn.Cell):
|
|
"""
|
|
Test class: basic mean/sd function.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaBasics, self).__init__()
|
|
self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32)
|
|
|
|
def construct(self):
|
|
mean = self.g.mean()
|
|
sd = self.g.sd()
|
|
mode = self.g.mode()
|
|
return mean + sd + mode
|
|
|
|
def test_bascis():
|
|
"""
|
|
Test mean/sd/mode/entropy functionality of Gamma.
|
|
"""
|
|
net = GammaBasics()
|
|
ans = net()
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class GammaConstruct(nn.Cell):
|
|
"""
|
|
Gamma distribution: going through construct.
|
|
"""
|
|
def __init__(self):
|
|
super(GammaConstruct, self).__init__()
|
|
self.gamma = msd.Gamma([3.0], [4.0])
|
|
self.gamma1 = msd.Gamma()
|
|
|
|
def construct(self, value, concentration1, concentration0):
|
|
prob = self.gamma('prob', value)
|
|
prob1 = self.gamma('prob', value, concentration1, concentration0)
|
|
prob2 = self.gamma1('prob', value, concentration1, concentration0)
|
|
return prob + prob1 + prob2
|
|
|
|
def test_gamma_construct():
|
|
"""
|
|
Test probability function going through construct.
|
|
"""
|
|
net = GammaConstruct()
|
|
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
|
concentration1 = Tensor([0.0], dtype=dtype.float32)
|
|
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
|
ans = net(value, concentration1, concentration0)
|
|
assert isinstance(ans, Tensor)
|