You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/probability/distribution/test_gamma.py

221 lines
7.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Gamma.
"""
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_gamma_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Gamma([0.], [1.], dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Gamma([0.], [1.], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Gamma([0.], [1.], seed='seed')
def test_rate():
with pytest.raises(ValueError):
msd.Gamma([0.], [0.])
with pytest.raises(ValueError):
msd.Gamma([0.], [-1.])
def test_scalar():
with pytest.raises(TypeError):
msd.Gamma(3., [4.])
with pytest.raises(TypeError):
msd.Gamma([3.], -4.)
def test_arguments():
"""
args passing during initialization.
"""
g = msd.Gamma()
assert isinstance(g, msd.Distribution)
g = msd.Gamma([3.0], [4.0], dtype=dtype.float32)
assert isinstance(g, msd.Distribution)
class GammaProb(nn.Cell):
"""
Gamma distribution: initialize with concentration/rate.
"""
def __init__(self):
super(GammaProb, self).__init__()
self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32)
def construct(self, value):
prob = self.gamma.prob(value)
log_prob = self.gamma.log_prob(value)
cdf = self.gamma.cdf(value)
log_cdf = self.gamma.log_cdf(value)
sf = self.gamma.survival_function(value)
log_sf = self.gamma.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_gamma_prob():
"""
Test probability functions: passing value through construct.
"""
net = GammaProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class GammaProb1(nn.Cell):
"""
Gamma distribution: initialize without concentration/rate.
"""
def __init__(self):
super(GammaProb1, self).__init__()
self.gamma = msd.Gamma()
def construct(self, value, concentration, rate):
prob = self.gamma.prob(value, concentration, rate)
log_prob = self.gamma.log_prob(value, concentration, rate)
cdf = self.gamma.cdf(value, concentration, rate)
log_cdf = self.gamma.log_cdf(value, concentration, rate)
sf = self.gamma.survival_function(value, concentration, rate)
log_sf = self.gamma.log_survival(value, concentration, rate)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_gamma_prob1():
"""
Test probability functions: passing concentration/rate, value through construct.
"""
net = GammaProb1()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
concentration = Tensor([2.0, 3.0], dtype=dtype.float32)
rate = Tensor([1.0], dtype=dtype.float32)
ans = net(value, concentration, rate)
assert isinstance(ans, Tensor)
class GammaKl(nn.Cell):
"""
Test class: kl_loss of Gamma distribution.
"""
def __init__(self):
super(GammaKl, self).__init__()
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.g2 = msd.Gamma(dtype=dtype.float32)
def construct(self, concentration_b, rate_b, concentration_a, rate_a):
kl1 = self.g1.kl_loss('Gamma', concentration_b, rate_b)
kl2 = self.g2.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss.
"""
net = GammaKl()
concentration_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
rate_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
concentration_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
rate_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(concentration_b, rate_b, concentration_a, rate_a)
assert isinstance(ans, Tensor)
class GammaCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of Gamma distribution.
"""
def __init__(self):
super(GammaCrossEntropy, self).__init__()
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.g2 = msd.Gamma(dtype=dtype.float32)
def construct(self, concentration_b, rate_b, concentration_a, rate_a):
h1 = self.g1.cross_entropy('Gamma', concentration_b, rate_b)
h2 = self.g2.cross_entropy('Gamma', concentration_b, rate_b, concentration_a, rate_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross entropy between Gamma distributions.
"""
net = GammaCrossEntropy()
concentration_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
rate_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
concentration_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
rate_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(concentration_b, rate_b, concentration_a, rate_a)
assert isinstance(ans, Tensor)
class GammaBasics(nn.Cell):
"""
Test class: basic mean/sd function.
"""
def __init__(self):
super(GammaBasics, self).__init__()
self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32)
def construct(self):
mean = self.g.mean()
sd = self.g.sd()
mode = self.g.mode()
return mean + sd + mode
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of Gamma.
"""
net = GammaBasics()
ans = net()
assert isinstance(ans, Tensor)
class GammaConstruct(nn.Cell):
"""
Gamma distribution: going through construct.
"""
def __init__(self):
super(GammaConstruct, self).__init__()
self.gamma = msd.Gamma([3.0], [4.0])
self.gamma1 = msd.Gamma()
def construct(self, value, concentration, rate):
prob = self.gamma('prob', value)
prob1 = self.gamma('prob', value, concentration, rate)
prob2 = self.gamma1('prob', value, concentration, rate)
return prob + prob1 + prob2
def test_gamma_construct():
"""
Test probability function going through construct.
"""
net = GammaConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
concentration = Tensor([0.0], dtype=dtype.float32)
rate = Tensor([1.0], dtype=dtype.float32)
ans = net(value, concentration, rate)
assert isinstance(ans, Tensor)