You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/unet3d/eval.py

79 lines
3.6 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import argparse
import numpy as np
from mindspore import dtype as mstype
from mindspore import Model, context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dataset import create_dataset
from src.unet3d_model import UNet3d
from src.config import config as cfg
from src.utils import create_sliding_window, CalculateDice
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
def get_args():
parser = argparse.ArgumentParser(description='Test the UNet3D on images and target masks')
parser.add_argument('--data_url', dest='data_url', type=str, default='', help='image data directory')
parser.add_argument('--seg_url', dest='seg_url', type=str, default='', help='seg data directory')
parser.add_argument('--ckpt_path', dest='ckpt_path', type=str, default='', help='checkpoint path')
return parser.parse_args()
def test_net(data_dir, seg_dir, ckpt_path, config=None):
eval_dataset = create_dataset(data_path=data_dir, seg_path=seg_dir, config=config, is_training=False)
eval_data_size = eval_dataset.get_dataset_size()
print("train dataset length is:", eval_data_size)
network = UNet3d(config=config)
network.set_train(False)
param_dict = load_checkpoint(ckpt_path)
load_param_into_net(network, param_dict)
model = Model(network)
index = 0
total_dice = 0
for batch in eval_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
image = batch["image"]
seg = batch["seg"]
print("current image shape is {}".format(image.shape), flush=True)
sliding_window_list, slice_list = create_sliding_window(image, config.roi_size, config.overlap)
image_size = (config.batch_size, config.num_classes) + image.shape[2:]
output_image = np.zeros(image_size, np.float32)
count_map = np.zeros(image_size, np.float32)
importance_map = np.ones(config.roi_size, np.float32)
for window, slice_ in zip(sliding_window_list, slice_list):
window_image = Tensor(window, mstype.float32)
pred_probs = model.predict(window_image)
output_image[slice_] += pred_probs.asnumpy()
count_map[slice_] += importance_map
output_image = output_image / count_map
dice, _ = CalculateDice(output_image, seg)
print("The {} batch dice is {}".format(index, dice), flush=True)
total_dice += dice
index = index + 1
avg_dice = total_dice / eval_data_size
print("**********************End Eval***************************************")
print("eval average dice is {}".format(avg_dice))
if __name__ == '__main__':
args = get_args()
print("Testing setting:", args)
test_net(data_dir=args.data_url,
seg_dir=args.seg_url,
ckpt_path=args.ckpt_path,
config=cfg)