You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/utils/convert_utils.cc

631 lines
21 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils/convert_utils.h"
#include <vector>
#include <string>
#include <memory>
#include <algorithm>
#include <list>
#include <utility>
#include <cfloat>
#include "pybind11/pybind11.h"
#include "abstract/abstract_value.h"
#include "pipeline/jit/parse/parse.h"
#include "pipeline/jit/parse/parse_base.h"
#include "ir/value.h"
#include "ir/tensor.h"
#include "ir/param_value.h"
#include "utils/base_ref_extends.h"
namespace mindspore {
py::object BuiltinsToPyData(const Any &value);
py::object BuiltinsToPyData(const BaseRef &value);
py::object VectorToPyData(const Any &value);
py::object VectorRefToPyData(const VectorRef &value);
py::object ValuePtrToPyData(const ValuePtr &value) {
if (value == nullptr) {
MS_LOG(EXCEPTION) << "value is null";
}
py::object ret;
if (value->isa<Int32Imm>()) {
MS_LOG(DEBUG) << "int";
py::int_ v = value->cast<Int32ImmPtr>()->value();
ret = v;
} else if (value->isa<UInt64Imm>()) {
MS_LOG(DEBUG) << "uint64";
py::int_ v = value->cast<UInt64ImmPtr>()->value();
ret = v;
} else if (value->isa<BoolImm>()) {
MS_LOG(DEBUG) << "bool";
py::bool_ v = value->cast<BoolImmPtr>()->value();
ret = v;
} else if (value->isa<FP64Imm>()) {
MS_LOG(DEBUG) << "double";
py::float_ v = value->cast<FP64ImmPtr>()->value();
ret = v;
} else if (value->isa<FP32Imm>()) {
MS_LOG(DEBUG) << "float";
py::float_ v = value->cast<FP32ImmPtr>()->value();
ret = v;
} else if (value->isa<StringImm>()) {
MS_LOG(DEBUG) << "String";
py::str v = value->cast<StringImmPtr>()->value();
ret = v;
} else if (value->isa<tensor::Tensor>()) {
MS_LOG(DEBUG) << "tensor";
py::tuple v(1);
v[0] = value->cast<tensor::TensorPtr>();
ret = v[0];
} else if (value->isa<tensor::MetaTensor>()) {
MS_LOG(DEBUG) << "MetaTensor";
py::tuple v(1);
v[0] = value->cast<tensor::MetaTensorPtr>();
ret = v[0];
} else if (value->isa<RefKey>()) {
MS_LOG(DEBUG) << "RefKey";
py::tuple v(1);
v[0] = value->cast<RefKeyPtr>();
ret = v[0];
} else if (value->isa<ValueTuple>()) {
MS_LOG(DEBUG) << "tuple";
auto value_tuple = value->cast<ValueTuplePtr>()->value();
py::tuple rets(value_tuple.size());
size_t i = 0;
for (auto &v : value_tuple) {
rets[i] = ValuePtrToPyData(v);
i++;
}
ret = rets;
} else if (value->isa<ValueList>()) {
MS_LOG(DEBUG) << "list";
auto value_list = value->cast<ValueListPtr>()->value();
py::list rets(value_list.size());
size_t i = 0;
for (auto &v : value_list) {
rets[i] = ValuePtrToPyData(v);
i++;
}
ret = rets;
} else if (value->isa<Ellipsis>()) {
ret = py::ellipsis();
} else if (value->isa<ValueSlice>()) {
auto slice = value->cast<ValueSlicePtr>();
auto start = ValuePtrToPyData(slice->start());
auto end = ValuePtrToPyData(slice->stop());
auto step = ValuePtrToPyData(slice->step());
ret = parse::python_adapter::CallPyFn(parse::PYTHON_MOD_PARSE_MODULE, parse::PYTHON_PARSE_CLASS_SLICE, start, end,
step);
} else if (value->isa<Type>()) {
py::tuple v(1);
v[0] = value->cast<TypePtr>();
ret = v[0];
} else if (value->isa<AnyValue>()) {
ret = py::none();
} else if (value->isa<None>()) {
ret = py::none();
} else {
MS_LOG(INFO) << "Unsupported convert value: " << value->ToString() << " to a PyData.";
}
return ret;
}
py::object AnyToPyData(const Any &value) {
py::object ret;
MS_LOG(DEBUG) << "AnyToPyData " << value.GetString();
if (value.is<int>() || value.is<float>() || value.is<double>() || value.is<bool>()) {
ret = BuiltinsToPyData(value);
} else if (value.is<ValuePtr>()) {
MS_LOG(DEBUG) << "ValuePtr";
ValuePtr v = value.cast<ValuePtr>();
ret = ValuePtrToPyData(v);
} else if (value.is<tensor::TensorPtr>()) {
MS_LOG(DEBUG) << "tensor";
py::tuple v(1);
v[0] = value.cast<tensor::TensorPtr>();
ret = v[0];
} else if (value.is<py::object>()) {
MS_LOG(DEBUG) << "py obj";
ret = value.cast<py::object>();
} else if (value.is<std::vector<tensor::TensorPtr>>() || value.is<std::vector<Any>>()) {
ret = VectorToPyData(value);
} else if (value.is<std::list<Any>>()) {
MS_LOG(DEBUG) << "list_any";
auto value_list = value.cast<std::list<Any>>();
py::list rets = py::list();
for (auto &v : value_list) {
rets.append(AnyToPyData(v));
}
ret = rets;
} else if (value.is<std::vector<Any>>()) {
auto value_list = value.cast<std::vector<Any>>();
py::tuple rets(value_list.size());
for (size_t i = 0; i < value_list.size(); i++) {
rets[i] = AnyToPyData(value_list[i]);
}
ret = rets;
} else if (value.is<TypePtr>()) {
py::tuple v(1);
v[0] = value.cast<TypePtr>();
ret = v[0];
} else {
MS_LOG(EXCEPTION) << "value is not support type";
}
return ret;
}
py::object BaseRefToPyData(const BaseRef &value) {
py::object ret;
MS_LOG(DEBUG) << "BaseRefToPyData " << value.ToString();
if (utils::isa<int>(value) || utils::isa<float>(value) || utils::isa<double>(value) || utils::isa<bool>(value)) {
ret = BuiltinsToPyData(value);
} else if (utils::isa<ValuePtr>(value)) {
MS_LOG(DEBUG) << "ValuePtr";
ValuePtr v = utils::cast<ValuePtr>(value);
ret = ValuePtrToPyData(v);
} else if (utils::isa<tensor::TensorPtr>(value)) {
MS_LOG(DEBUG) << "tensor";
py::tuple v(1);
v[0] = utils::cast<tensor::TensorPtr>(value);
ret = v[0];
} else if (utils::isa<PyObjectRef>(value)) {
MS_LOG(DEBUG) << "py obj";
PyObjectRef py_ref = utils::cast<PyObjectRef>(value);
ret = py_ref.object_;
} else if (utils::isa<VectorRef>(value)) {
auto vec_ref = utils::cast<VectorRef>(value);
ret = VectorRefToPyData(vec_ref);
} else if (utils::isa<TypePtr>(value)) {
py::tuple v(1);
v[0] = utils::cast<TypePtr>(value);
ret = v[0];
} else {
MS_LOG(EXCEPTION) << "value is not support type";
}
return ret;
}
bool ValueToBool(const ValuePtr &v, bool *value) {
MS_EXCEPTION_IF_NULL(v);
if (v->isa<BoolImm>()) {
*value = v->cast<BoolImmPtr>()->value();
} else if (v->isa<Int32Imm>()) {
*value = v->cast<Int32ImmPtr>()->value() == 0 ? false : true;
} else if (v->isa<UInt32Imm>()) {
*value = v->cast<UInt32ImmPtr>()->value() == 0 ? false : true;
} else if (v->isa<FP32Imm>()) {
*value = v->cast<FP32ImmPtr>()->value() == 0 ? false : true;
} else if (v->isa<FP64Imm>()) {
*value = v->cast<FP64ImmPtr>()->value() == 0 ? false : true;
} else if (v->isa<tensor::Tensor>()) {
auto tensor = v->cast<tensor::TensorPtr>();
MS_EXCEPTION_IF_NULL(tensor);
(void)tensor->data_sync();
bool *tensor_data = static_cast<bool *>(tensor->data_c());
// maybe need to support if tensor is a bool array
auto vb = tensor_data[0];
*value = vb;
} else {
MS_LOG(WARNING) << "value is not supported to cast to be bool";
return false;
}
return true;
}
bool BaseRefToInt(const ValuePtr &v, int *value) {
MS_EXCEPTION_IF_NULL(v);
if (v->isa<tensor::Tensor>()) {
auto tensor = v->cast<tensor::TensorPtr>();
(void)tensor->data_sync();
int *tensor_data = static_cast<int *>(tensor->data_c());
auto vb = tensor_data[0];
*value = vb;
return true;
}
MS_LOG(ERROR) << "Index must be tensor type.";
return false;
}
bool BaseRefToBool(const BaseRef &v, bool *value) {
if (utils::isa<ValuePtr>(v)) {
return ValueToBool(utils::cast<ValuePtr>(v), value);
} else if (utils::isa<bool>(v)) {
auto vb = utils::cast<bool>(v);
if (vb == true) {
*value = true;
} else {
*value = false;
}
} else if (utils::isa<int>(v)) {
auto vb = utils::cast<int>(v);
if (vb == 0) {
*value = false;
} else {
*value = true;
}
} else if (utils::isa<unsigned int>(v)) {
auto vb = utils::cast<unsigned int>(v);
if (vb == 0) {
*value = false;
} else {
*value = true;
}
} else if (utils::isa<float>(v)) {
auto vb = utils::cast<float>(v);
if (vb >= -FLT_EPSILON && vb <= FLT_EPSILON) {
*value = false;
} else {
*value = true;
}
} else if (utils::isa<double>(v)) {
auto vb = utils::cast<double>(v);
if (vb >= -DBL_EPSILON && vb <= DBL_EPSILON) {
*value = false;
} else {
*value = true;
}
} else {
MS_LOG(DEBUG) << "value is not supported to cast to be bool";
return false;
}
return true;
}
py::object BuiltinsToPyData(const Any &value) {
if (value.is<int>()) {
MS_LOG(DEBUG) << "int";
py::int_ ret = value.cast<int>();
return std::move(ret);
} else if (value.is<float>()) {
MS_LOG(DEBUG) << "float";
py::float_ ret = value.cast<float>();
return std::move(ret);
} else if (value.is<double>()) {
MS_LOG(DEBUG) << "double";
py::float_ ret = value.cast<double>();
return std::move(ret);
} else {
MS_LOG(DEBUG) << "bool";
py::bool_ ret = value.cast<bool>();
return std::move(ret);
}
}
py::object BuiltinsToPyData(const BaseRef &value) {
if (utils::isa<int>(value)) {
MS_LOG(DEBUG) << "int";
py::int_ ret = utils::cast<int>(value);
return std::move(ret);
} else if (utils::isa<float>(value)) {
MS_LOG(DEBUG) << "float";
py::float_ ret = utils::cast<float>(value);
return std::move(ret);
} else if (utils::isa<double>(value)) {
MS_LOG(DEBUG) << "double";
py::float_ ret = utils::cast<double>(value);
return std::move(ret);
} else {
MS_LOG(DEBUG) << "bool";
py::bool_ ret = utils::cast<bool>(value);
return std::move(ret);
}
}
py::object VectorToPyData(const Any &value) {
py::object ret;
if (value.is<std::vector<tensor::TensorPtr>>()) {
MS_LOG(DEBUG) << "vector_tensor";
std::vector<tensor::TensorPtr> outputs;
outputs = value.cast<std::vector<tensor::TensorPtr>>();
py::tuple tensor_tuple(outputs.size());
for (std::size_t i = 0; i < outputs.size(); ++i) {
tensor_tuple[i] = *outputs[i];
}
ret = tensor_tuple;
} else {
MS_LOG(DEBUG) << "vector_any";
auto value_list = value.cast<std::vector<Any>>();
py::tuple any_tuple = py::tuple(value_list.size());
size_t i = 0;
for (auto &v : value_list) {
any_tuple[i] = AnyToPyData(v);
i++;
}
ret = any_tuple;
}
return ret;
}
py::object VectorRefToPyData(const VectorRef &value_list) {
py::object ret;
MS_LOG(DEBUG) << "vector_ref";
size_t value_size = value_list.size();
auto ref_tuple = py::tuple(value_size);
for (size_t i = 0; i < value_size; i++) {
ref_tuple[i] = BaseRefToPyData(value_list[i]);
}
ret = ref_tuple;
return ret;
}
AbstractBasePtr PyListDtype2AbstractTensor(const py::object &shape_obj, const py::object &type_obj) {
if ((py::isinstance<py::list>(shape_obj) || py::isinstance<py::tuple>(shape_obj)) && py::isinstance<Type>(type_obj)) {
auto ret_vec = shape_obj.cast<std::vector<int>>();
auto ret_dtype = type_obj.cast<TypePtr>();
MS_EXCEPTION_IF_NULL(ret_dtype);
// if the size of shape list is empty, return an scalar abstract
if (ret_vec.empty() && (!ret_dtype->isa<TensorType>())) {
abstract::AbstractScalarPtr abs_scalar = std::make_shared<abstract::AbstractScalar>(kAnyValue, ret_dtype);
return abs_scalar;
}
AbstractBasePtr tensor = nullptr;
if (ret_dtype->isa<TensorType>()) {
auto tensor_type = type_obj.cast<TensorTypePtr>();
MS_EXCEPTION_IF_NULL(tensor_type);
tensor = std::make_shared<abstract::AbstractTensor>(tensor_type->element(), ret_vec);
} else {
tensor = std::make_shared<abstract::AbstractTensor>(ret_dtype, ret_vec);
}
return tensor;
} else if (py::isinstance<py::tuple>(shape_obj) && py::isinstance<py::tuple>(type_obj)) {
py::tuple shape_tuple = shape_obj.cast<py::tuple>();
py::tuple typeid_tuple = type_obj.cast<py::tuple>();
AbstractBasePtrList ptr_list;
for (size_t it = 0; it < shape_tuple.size(); ++it) {
auto tensor_it = PyListDtype2AbstractTensor(shape_tuple[it], typeid_tuple[it]);
ptr_list.push_back(tensor_it);
}
auto tuple = std::make_shared<abstract::AbstractTuple>(ptr_list);
return tuple;
} else if (shape_obj.is_none() && type_obj.is_none()) {
// AbstractNone indicates there is no output for this CNode node.
auto abstract_none = std::make_shared<abstract::AbstractNone>();
return abstract_none;
} else {
MS_LOG(EXCEPTION) << "Python evaluator return invalid shape or type. " << (std::string)py::str(type_obj);
}
}
bool IsGraphOutputValueNodeOrParameter(const AnfNodePtr &output, const py::tuple &args,
const std::shared_ptr<py::object> &ret_val) {
if (output->isa<ValueNode>()) {
MS_LOG(INFO) << "Graph's output is a constant. No need to execute.";
ValuePtr value = GetValueNode(output);
*ret_val = ValuePtrToPyData(value);
return true;
}
// Adapter will transform values in __init__() and construct() to parameters, this could cause
// inputs (a.k.a args in current function) size less than parameters'.
if (output->isa<Parameter>()) {
MS_LOG(INFO) << "Graph's output is a parameter. If all params are inputs, no need to execute.";
if (args.empty()) {
MS_LOG(EXCEPTION) << "Inputs size is 0, let graph to be executed.";
}
// Find the right parameter as ret_val.
auto func_graph = output->func_graph();
MS_EXCEPTION_IF_NULL(func_graph);
auto params = func_graph->parameters();
if (params.empty()) {
MS_EXCEPTION(UnknownError) << "Graph's parameters size is 0";
}
if ((args.size() + func_graph->hyper_param_count()) != params.size()) {
MS_LOG(EXCEPTION) << "Input size " << args.size() << " add Parameter count " << func_graph->hyper_param_count()
<< " not equal to graph input size " << params.size() << ", let graph to be executed.";
}
auto it = std::find(params.begin(), params.end(), output);
if (it == params.end()) {
MS_EXCEPTION(UnknownError) << "When graph output is Parameter, it should be found in graph parameters";
}
size_t index = it - params.cbegin();
if (index >= args.size() + func_graph->hyper_param_count()) {
MS_EXCEPTION(UnknownError) << "Index " << index << " equal or larger than args size " << args.size()
<< " add Parameter count " << func_graph->hyper_param_count() << ".";
}
if (index < args.size()) {
*ret_val = args[index];
} else {
auto param = dyn_cast<Parameter>(params[index]);
MS_EXCEPTION_IF_NULL(param);
if (!param->has_default()) {
MS_LOG(EXCEPTION) << "Can not determine value of Parameter " << index << " (" << param->name() << ")";
}
auto tensor = param->default_param()->value();
*ret_val = py::cast(tensor);
}
return true;
}
return false;
}
// Isomorphism
static bool SameNodeShallow(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
if (equiv_node == nullptr) {
MS_LOG(ERROR) << "Invalid equiv_node";
return false;
}
if (equiv_node->count(node1) > 0 && (*equiv_node)[node1] == node2) {
return true;
}
if (IsValueNode<FuncGraph>(node1) && IsValueNode<FuncGraph>(node2)) {
return Isomorphic(GetValueNode<FuncGraphPtr>(node1), GetValueNode<FuncGraphPtr>(node2), equiv_func_graph,
equiv_node);
}
if (node1->isa<ValueNode>() && node2->isa<ValueNode>()) {
auto a1 = GetValueNode(node1);
auto a2 = GetValueNode(node2);
if (a1->isa<Primitive>() && a2->isa<Primitive>()) {
return a1->cast<PrimitivePtr>()->name() == a2->cast<PrimitivePtr>()->name();
} else if (a1->isa<tensor::Tensor>() && a2->isa<tensor::Tensor>()) {
return a1->cast<tensor::TensorPtr>()->ValueEqual(*(a2->cast<tensor::TensorPtr>()));
} else {
return *a1 == *a2;
}
}
if (node1->isa<Parameter>() && node2->isa<Parameter>()) {
auto para1 = node1->cast<ParameterPtr>();
auto para2 = node2->cast<ParameterPtr>();
if (para1->name() == para2->name()) {
return true;
}
MS_LOG(DEBUG) << "two parameters are not equal.";
return false;
}
MS_LOG(ERROR) << "type error";
return false;
}
static bool SameNode(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
MS_EXCEPTION_IF_NULL(node1);
MS_EXCEPTION_IF_NULL(node2);
if (node1->isa<CNode>() && node2->isa<CNode>()) {
auto &inputs1 = node1->cast<CNodePtr>()->inputs();
auto &inputs2 = node2->cast<CNodePtr>()->inputs();
for (std::size_t i = 0; i < inputs1.size(); ++i) {
if (!SameNodeShallow(inputs1[i], inputs2[i], equiv_func_graph, equiv_node)) {
return false;
}
}
return true;
}
return SameNodeShallow(node1, node2, equiv_func_graph, equiv_node);
}
static bool SameSubgraph(AnfNodePtr root1, AnfNodePtr root2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
std::unordered_set<AnfNodePtr> done;
std::stack<std::pair<AnfNodePtr, AnfNodePtr>> todo;
todo.push(std::make_pair(root1, root2));
while (todo.size() > 0) {
AnfNodePtr node1 = todo.top().first;
if (done.count(node1) > 0) {
todo.pop();
continue;
}
AnfNodePtr node2 = todo.top().second;
bool condition = false;
std::vector<AnfNodePtr> s1 = SuccIncoming(node1);
std::vector<AnfNodePtr> s2 = SuccIncoming(node2);
if (s1.size() != s2.size()) {
return false;
}
for (std::size_t i = 0; i < s1.size(); ++i) {
if (done.count(s1[i]) == 0) {
todo.push(std::make_pair(s1[i], s2[i]));
condition = true;
}
}
if (condition) {
continue;
}
(void)done.insert(node1);
auto res = SameNode(node1, node2, equiv_func_graph, equiv_node);
if (res) {
(*equiv_node)[node1] = node2;
} else {
return false;
}
todo.pop();
}
return true;
}
bool Isomorphic(FuncGraphPtr fg1, FuncGraphPtr fg2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
auto fg1_fg2 = std::make_pair(fg1, fg2);
if (equiv_func_graph == nullptr) {
MS_LOG(ERROR) << "equiv_func_graph not init";
return false;
}
if (equiv_func_graph->find(fg1_fg2) != equiv_func_graph->end()) {
return (*equiv_func_graph)[fg1_fg2] != kNotEquiv;
}
if (fg1 == nullptr || fg2 == nullptr) {
MS_LOG(ERROR) << "Invalid function graph";
return false;
}
if (fg1->parameters().size() != fg2->parameters().size()) {
MS_LOG(DEBUG) << "parameters size not match";
return false;
}
if (equiv_node != nullptr) {
for (std::size_t i = 0; i < fg1->parameters().size(); ++i) {
(*equiv_node)[fg1->parameters()[i]] = fg2->parameters()[i];
}
(*equiv_func_graph)[fg1_fg2] = kPending;
auto result = SameSubgraph(fg1->get_return(), fg2->get_return(), equiv_func_graph, equiv_node);
(*equiv_func_graph)[fg1_fg2] = EquivState(result);
return result;
}
MS_LOG(ERROR) << "equiv_node not init";
return false;
}
tensor::TensorPtr ScalarToTensor(const ScalarPtr &scalar) {
if (scalar == nullptr) {
MS_EXCEPTION(ArgumentError) << "Nullptr Error!";
}
tensor::TensorPtr tensor = nullptr;
if (scalar->isa<FloatImm>()) {
tensor = std::make_shared<tensor::Tensor>(static_cast<double>(GetValue<float>(scalar)), kFloat32);
} else if (scalar->isa<IntergerImm>()) {
tensor = std::make_shared<tensor::Tensor>(static_cast<int64_t>(GetValue<int>(scalar)), kInt32);
} else if (scalar->isa<BoolImm>()) {
const int64_t bool_value = GetValue<bool>(scalar) ? 1 : 0;
tensor = std::make_shared<tensor::Tensor>(bool_value, kBool);
} else {
auto type = scalar->type();
auto type_str = (type == nullptr) ? "nullptr" : type->ToString();
MS_LOG(EXCEPTION) << "Invalid scalar type: " << type_str;
}
MS_EXCEPTION_IF_NULL(tensor);
return tensor;
}
void TensorValueToTensor(const ValuePtr &value, std::vector<tensor::TensorPtr> *tensors) {
MS_EXCEPTION_IF_NULL(value);
MS_EXCEPTION_IF_NULL(tensors);
if (value->isa<ValueTuple>()) {
auto value_tuple = value->cast<ValueTuplePtr>();
MS_EXCEPTION_IF_NULL(value_tuple);
for (size_t i = 0; i < value_tuple->size(); ++i) {
ValuePtr element = value_tuple->value()[i];
if (element->isa<tensor::Tensor>()) {
auto tensor = element->cast<tensor::TensorPtr>();
MS_EXCEPTION_IF_NULL(tensor);
tensors->push_back(tensor);
}
}
} else if (value->isa<tensor::Tensor>()) {
tensor::TensorPtr tensor = value->cast<tensor::TensorPtr>();
MS_EXCEPTION_IF_NULL(tensor);
tensors->push_back(tensor);
}
}
} // namespace mindspore