You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
13 KiB
284 lines
13 KiB
/**
|
|
* This is the C++ adaptation and derivative work of Myia (https://github.com/mila-iqia/myia/).
|
|
*
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "pipeline/jit/resource.h"
|
|
#include "pipeline/jit/static_analysis/static_analysis.h"
|
|
#include "debug/trace.h"
|
|
#include "ir/dtype.h"
|
|
#include "pipeline/jit/parse/data_converter.h"
|
|
#include "frontend/operator/ops.h"
|
|
#include "ir/graph_utils.h"
|
|
#include "frontend/optimizer/ad/dfunctor.h"
|
|
|
|
namespace mindspore {
|
|
// namespace to support opmap definition
|
|
namespace pipeline {
|
|
|
|
BuiltInTypeMap &GetMethodMap() {
|
|
static BuiltInTypeMap method_map = {
|
|
{kObjectTypeString,
|
|
{
|
|
{"__bool__", std::string("str_bool")} // C.str_bool
|
|
}},
|
|
{kMetaTypeNone,
|
|
{
|
|
{"__bool__", std::string("none_bool")} // C.none_bool
|
|
}},
|
|
{kNumberTypeBool,
|
|
{
|
|
{"__and__", prim::kPrimBoolAnd}, // P.bool_and
|
|
{"__or__", prim::kPrimBoolOr}, // P.bool_or
|
|
{"__eq__", prim::kPrimBoolEq}, // P.bool_eq
|
|
{"__ne__", std::string("bool_ne")}, // C.bool_ne
|
|
{"__bool__", prim::kPrimIdentity} // P.identity
|
|
}},
|
|
{kNumberTypeInt,
|
|
{
|
|
{"__add__", prim::kPrimScalarAdd}, // P.scalar_add
|
|
{"__sub__", prim::kPrimScalarSub}, // P.scalar_sub
|
|
{"__mul__", prim::kPrimScalarMul}, // P.scalar_mul
|
|
{"__floordiv__", std::string("int_floordiv")}, // C.int_floordiv
|
|
{"__truediv__", std::string("int_truediv")}, // C.int_truediv
|
|
{"__mod__", prim::kPrimScalarMod}, // P.scalar_mod
|
|
{"__pow__", prim::kPrimScalarPow}, // P.scalar_pow
|
|
{"__floor__", prim::kPrimIdentity}, // P.identity
|
|
{"__trunc__", prim::kPrimIdentity}, // P.identity
|
|
{"__pos__", prim::kPrimScalarUadd}, // P.scalar_uadd
|
|
{"__neg__", prim::kPrimScalarUsub}, // P.scalar_usub
|
|
{"__eq__", prim::kPrimScalarEq}, // P.scalar_eq
|
|
{"__ne__", prim::kPrimScalarNe}, // P.scalar_ne
|
|
{"__lt__", prim::kPrimScalarLt}, // P.scalar_lt
|
|
{"__gt__", prim::kPrimScalarGt}, // P.scalar_gt
|
|
{"__le__", prim::kPrimScalarLe}, // P.scalar_le
|
|
{"__ge__", prim::kPrimScalarGe}, // P.scalar_ge
|
|
{"__bool__", std::string("int_bool")}, // C.int_bool
|
|
{"__ms_to_array__", prim::kPrimScalarToArray}, // P.scalar_to_array
|
|
}},
|
|
{kNumberTypeUInt,
|
|
{
|
|
{"__add__", prim::kPrimScalarAdd}, // P.scalar_add,
|
|
{"__sub__", prim::kPrimScalarSub}, // P.scalar_sub,
|
|
{"__mul__", prim::kPrimScalarMul}, // P.scalar_mul,
|
|
{"__floordiv__", prim::kPrimScalarDiv}, // P.scalar_div,
|
|
{"__truediv__", std::string("int_truediv")}, // C.int_truediv
|
|
{"__mod__", prim::kPrimScalarMod}, // P.scalar_mod,
|
|
{"__pow__", prim::kPrimScalarPow}, // P.scalar_pow,
|
|
{"__floor__", prim::kPrimIdentity}, // P.identity,
|
|
{"__trunc__", prim::kPrimIdentity}, // P.identity,
|
|
{"__pos__", prim::kPrimScalarUadd}, // P.scalar_uadd,
|
|
{"__neg__", prim::kPrimScalarUsub}, // P.scalar_usub,
|
|
{"__eq__", prim::kPrimScalarEq}, // P.scalar_eq,
|
|
{"__ne__", prim::kPrimScalarNe}, // P.scalar_ne,
|
|
{"__lt__", prim::kPrimScalarLt}, // P.scalar_lt,
|
|
{"__gt__", prim::kPrimScalarGt}, // P.scalar_gt,
|
|
{"__le__", prim::kPrimScalarLe}, // P.scalar_le,
|
|
{"__ge__", prim::kPrimScalarGe}, // P.scalar_ge,
|
|
{"__bool__", std::string("int_bool")}, // C.int_bool
|
|
{"__ms_to_array__", prim::kPrimScalarToArray}, // P.scalar_to_array,
|
|
}},
|
|
{kNumberTypeFloat,
|
|
{
|
|
{"__add__", prim::kPrimScalarAdd}, // P.scalar_add,
|
|
{"__sub__", prim::kPrimScalarSub}, // P.scalar_sub,
|
|
{"__mul__", prim::kPrimScalarMul}, // P.scalar_mul,
|
|
{"__floordiv__", std::string("float_floordiv")}, // C.float_floordiv
|
|
{"__truediv__", prim::kPrimScalarDiv}, // P.scalar_div,
|
|
{"__mod__", prim::kPrimScalarMod}, // P.scalar_mod,
|
|
{"__pow__", prim::kPrimScalarPow}, // P.scalar_pow,
|
|
{"__floor__", prim::kPrimScalarFloor}, // P.scalar_floor,
|
|
{"__trunc__", prim::kPrimScalarTrunc}, // P.scalar_trunc,
|
|
{"__pos__", prim::kPrimScalarUadd}, // P.scalar_uadd,
|
|
{"__neg__", prim::kPrimScalarUsub}, // P.scalar_usub,
|
|
{"__eq__", prim::kPrimScalarEq}, // P.scalar_eq,
|
|
{"__ne__", prim::kPrimScalarNe}, // P.scalar_ne,
|
|
{"__lt__", prim::kPrimScalarLt}, // P.scalar_lt,
|
|
{"__gt__", prim::kPrimScalarGt}, // P.scalar_gt,
|
|
{"__le__", prim::kPrimScalarLe}, // P.scalar_le,
|
|
{"__ge__", prim::kPrimScalarGe}, // P.scalar_ge,
|
|
{"__bool__", std::string("float_bool")}, // C.float_bool
|
|
{"__ms_to_array__", prim::kPrimScalarToArray}, // P.scalar_to_array,
|
|
}},
|
|
{kObjectTypeTuple,
|
|
{
|
|
{"__len__", prim::kPrimTupleLen}, // P.tuple_len,
|
|
{"__getitem__", prim::kPrimTupleGetItem}, // P.tuple_getitem,
|
|
{"__setitem__", prim::kPrimTupleSetItem}, // P.tuple_setitem,
|
|
{"__ms_iter__", prim::kPrimIdentity}, // P.identity,
|
|
{"__ms_next__", std::string("tuple_next")}, // C.tuple_next,
|
|
{"__ms_hasnext__", std::string("tuple_hasnext")}, // C.tuple_hasnext
|
|
{"__bool__", std::string("tuple_bool")} // C.tuple_bool
|
|
}},
|
|
{kObjectTypeList,
|
|
{
|
|
{"__len__", prim::kPrimListLen}, // P.list_len,
|
|
{"__getitem__", prim::kPrimListGetItem}, // P.list_getitem,
|
|
{"__setitem__", prim::kPrimListSetItem}, // P.list_setitem,
|
|
{"__ms_iter__", prim::kPrimIdentity}, // P.identity
|
|
{"__ms_next__", std::string("list_next")}, // C.list_next
|
|
{"append", std::string("list_append")}, // C.list_next
|
|
{"__bool__", std::string("list_bool")}, // C.list_bool
|
|
{"__ms_hasnext__", std::string("list_hasnext")},
|
|
}},
|
|
{kObjectTypeDictionary,
|
|
{
|
|
{"__len__", prim::kPrimDictLen}, // P.dict_len
|
|
{"__getitem__", prim::kPrimDictGetItem}, // P.dict_getitem
|
|
{"__setitem__", prim::kPrimDictSetItem}, // P.dict_setitem,
|
|
{"__bool__", std::string("dict_bool")} // C.dict_bool
|
|
}},
|
|
{kObjectTypeTensorType,
|
|
{
|
|
{"__add__", std::string("add")}, // C.add
|
|
{"__sub__", std::string("sub")}, // C.sub
|
|
{"__mul__", std::string("mul")}, // C.mul
|
|
{"__truediv__", std::string("truediv")}, // C.truediv
|
|
{"__floordiv__", std::string("floordiv")}, // C.floordiv
|
|
{"__mod__", std::string("mod")}, // C.mod
|
|
{"__pow__", std::string("pow_")}, // C.pow
|
|
{"__floor__", std::string("array_floor")}, // C.array_floor
|
|
{"__trunc__", std::string("array_trunc")}, // C.array_trunc
|
|
{"__pos__", std::string("array_uadd")}, // C.array_uadd
|
|
{"__neg__", std::string("array_usub")}, // C.array_usub
|
|
{"__eq__", std::string("eq")}, // C.eq
|
|
{"__ne__", std::string("ne")}, // C.ne
|
|
{"__lt__", std::string("lt")}, // C.lt
|
|
{"__gt__", std::string("gt")}, // C.gt
|
|
{"__le__", std::string("le")}, // C.le
|
|
{"__ge__", std::string("ge")}, // C.ge
|
|
{"__matmul__", prim::kPrimDot}, // P.dot,
|
|
{"__len__", prim::kPrimArrayLen}, // P.array_len,
|
|
{"__getitem__", prim::kPrimArrayGetItem}, // P.array_getitem,
|
|
{"__setitem__", prim::kPrimArraySetItem}, // P.array_setitem,
|
|
{"__ms_iter__", std::string("array_iter")}, // C.array_iter
|
|
{"__ms_to_array__", prim::kPrimIdentity}, // P.identity,
|
|
{"item", prim::kPrimArrayToScalar}, // P.array_to_scalar,
|
|
{"transpose", std::string("transpose")}, // P.transpose
|
|
{"__bool__", std::string("tensor_bool")}, // C.tensor_bool
|
|
}},
|
|
{kObjectTypeIndexedSlicesType,
|
|
{
|
|
{"values", prim::kPrimIndexedSlicesGetValues}, // F.indexed_slices_get_values
|
|
{"indices", prim::kPrimIndexedSlicesGetIndices}, // F.indexed_slices_get_indices
|
|
{"dense_shape", prim::kPrimIndexedSlicesGetDenseShape}, // F.indexed_slices_get_dense_shape
|
|
}},
|
|
{kObjectTypeSparseTensorType,
|
|
{
|
|
{"values", prim::kPrimSparseTensorGetValues}, // F.sparse_tensor_get_values
|
|
{"indices", prim::kPrimSparseTensorGetIndices}, // F.sparse_tensor_get_indices
|
|
{"dense_shape", prim::kPrimSparseTensorGetDenseShape}, // F.sparse_tensor_get_dense_shape
|
|
}},
|
|
{kObjectTypeJTagged, {}},
|
|
{kObjectTypeSymbolicKeyType, {}},
|
|
{kObjectTypeEnvType, {}}};
|
|
return method_map;
|
|
}
|
|
|
|
BuiltInTypeMap &GetAttrMap() {
|
|
static BuiltInTypeMap attr_map = {{kObjectTypeTensorType,
|
|
{
|
|
{"shape", std::string("shape_")}, // C.shape_
|
|
{"dtype", std::string("dtype_")}, // C.dtype_
|
|
}}};
|
|
return attr_map;
|
|
}
|
|
|
|
Resource::Resource(const py::object &obj)
|
|
: engine_(std::make_shared<abstract::AnalysisEngine>(abstract::GetPrimEvaluatorConstructors(), manager_)),
|
|
input_(obj),
|
|
is_cleaned_(false) {}
|
|
|
|
Resource::~Resource() {
|
|
MS_LOG(DEBUG) << "Resource clear";
|
|
|
|
// If exit normally, these global variables will be cleaned
|
|
// in Resource::Clean call by MsPipeline::Compile, but if exit with MS_LOGEXCEPTION,
|
|
// these global variables may not being cleaned, it may
|
|
// cause segmentfault when free python object inside these global variables
|
|
// after python interpreter got freed, so these global variables
|
|
// are cleaned here.
|
|
// So if exit normally, these global variable will be cleaned twice,
|
|
// care be taken to prevent double free in the following functions.
|
|
if (!is_cleaned_) {
|
|
try {
|
|
Clean();
|
|
} catch (const std::exception &e) {
|
|
MS_LOG(ERROR) << "Exception when cleaning resource. Error info " << e.what();
|
|
} catch (...) {
|
|
MS_LOG(ERROR) << "Exception when cleaning resource.";
|
|
}
|
|
}
|
|
}
|
|
|
|
Any GetMethodOrAttr(const string &name, const TypeId &type_id, const BuiltInTypeMap &method_map) {
|
|
auto type_method_map = method_map.find(static_cast<int>(type_id));
|
|
if (type_method_map == method_map.end()) {
|
|
return Any();
|
|
}
|
|
auto method = type_method_map->second.find(name);
|
|
if (method == type_method_map->second.end()) {
|
|
return Any();
|
|
}
|
|
return method->second;
|
|
}
|
|
|
|
bool Resource::IsTypeInBuiltInMap(const TypeId &type) {
|
|
TypeId type_id = NormalizeTypeId(type);
|
|
const BuiltInTypeMap &method_map = GetMethodMap();
|
|
auto iter = method_map.find(static_cast<int>(type_id));
|
|
if (iter == method_map.end()) {
|
|
const BuiltInTypeMap &attr_map = GetAttrMap();
|
|
iter = attr_map.find(static_cast<int>(type_id));
|
|
if (iter == attr_map.end()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Any Resource::GetMethodPtr(const TypeId &type, const std::string &name) {
|
|
TypeId type_id = NormalizeTypeId(type);
|
|
const BuiltInTypeMap &method_map = GetMethodMap();
|
|
return GetMethodOrAttr(name, type_id, method_map);
|
|
}
|
|
|
|
Any Resource::GetAttrPtr(const TypeId &type, const std::string &name) {
|
|
TypeId type_id = NormalizeTypeId(type);
|
|
const BuiltInTypeMap &attr_map = GetAttrMap();
|
|
return GetMethodOrAttr(name, type_id, attr_map);
|
|
}
|
|
|
|
void Resource::Clean() {
|
|
// AbstractTensor->elements() will be saved in AbstractBasePtrList
|
|
args_spec_.clear();
|
|
input_ = py::none();
|
|
// Context with AbstractBasePtrList may be saved in GraphEvaluator
|
|
// some Evaluator like ResolveEvaluator may save Python object in cache,
|
|
// it should be cleaned before Python Interpreter destructed.
|
|
MS_EXCEPTION_IF_NULL(engine_);
|
|
engine_->ClearEvaluatorCache();
|
|
// clean static variable to prevent from crash. As static variable is released after
|
|
// Python threads is released.
|
|
parse::data_converter::ClearObjectCache();
|
|
parse::Parser::CleanParserResource();
|
|
parse::CleanDataClassToClassMap();
|
|
trace::ClearTraceStack();
|
|
is_cleaned_ = true;
|
|
}
|
|
} // namespace pipeline
|
|
} // namespace mindspore
|