You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.7 KiB
92 lines
3.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Using for eval the model checkpoint"""
|
|
import os
|
|
|
|
import argparse
|
|
from absl import logging
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from mindspore import context, Model
|
|
|
|
import src.constants as rconst
|
|
from src.dataset import create_dataset
|
|
from src.metrics import NCFMetric
|
|
from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap, PredictWithSigmoid
|
|
|
|
from src.config import cfg
|
|
logging.set_verbosity(logging.INFO)
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='NCF')
|
|
parser.add_argument("--data_path", type=str, default="./dataset/") # The location of the input data.
|
|
parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"]) # Dataset to be trained and evaluated. ["ml-1m", "ml-20m"]
|
|
parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file.
|
|
parser.add_argument("--eval_file_name", type=str, default="eval.log") # Eval output file.
|
|
parser.add_argument("--checkpoint_file_path", type=str, default="./checkpoint/NCF-14_19418.ckpt") # The location of the checkpoint file.
|
|
args, _ = parser.parse_known_args()
|
|
|
|
def test_eval():
|
|
"""eval method"""
|
|
if not os.path.exists(args.output_path):
|
|
os.makedirs(args.output_path)
|
|
|
|
layers = cfg.layers
|
|
num_factors = cfg.num_factors
|
|
topk = rconst.TOP_K
|
|
num_eval_neg = rconst.NUM_EVAL_NEGATIVES
|
|
|
|
ds_eval, num_eval_users, num_eval_items = create_dataset(test_train=False, data_dir=args.data_path,
|
|
dataset=args.dataset, train_epochs=0,
|
|
eval_batch_size=cfg.eval_batch_size)
|
|
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
|
|
|
ncf_net = NCFModel(num_users=num_eval_users,
|
|
num_items=num_eval_items,
|
|
num_factors=num_factors,
|
|
model_layers=layers,
|
|
mf_regularization=0,
|
|
mlp_reg_layers=[0.0, 0.0, 0.0, 0.0],
|
|
mf_dim=16)
|
|
param_dict = load_checkpoint(args.checkpoint_file_path)
|
|
load_param_into_net(ncf_net, param_dict)
|
|
|
|
loss_net = NetWithLossClass(ncf_net)
|
|
train_net = TrainStepWrap(loss_net)
|
|
# train_net.set_train()
|
|
eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg)
|
|
|
|
ncf_metric = NCFMetric()
|
|
model = Model(train_net, eval_network=eval_net, metrics={"ncf": ncf_metric})
|
|
|
|
ncf_metric.clear()
|
|
out = model.eval(ds_eval)
|
|
|
|
eval_file_path = os.path.join(args.output_path, args.eval_file_name)
|
|
eval_file = open(eval_file_path, "a+")
|
|
eval_file.write("EvalCallBack: HR = {}, NDCG = {}\n".format(out['ncf'][0], out['ncf'][1]))
|
|
eval_file.close()
|
|
print("EvalCallBack: HR = {}, NDCG = {}".format(out['ncf'][0], out['ncf'][1]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
devid = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="Davinci",
|
|
save_graphs=True,
|
|
device_id=devid)
|
|
|
|
test_eval()
|