You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_bert_tokenizer.py

182 lines
5.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing BertTokenizer op in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.text as nlp
BERT_TOKENIZER_FILE = "../data/dataset/testTokenizerData/bert_tokenizer.txt"
vocab_bert = [
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"i", "am", "mak", "make", "small", "mistake", "##s", "during", "work", "##ing", "hour",
"😀", "😃", "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16", " ", "I",
"[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]", "[unused1]", "[unused10]"
]
pad = '<pad>'
test_paras = [
# test chinese text
dict(
first=1,
last=4,
expect_str=[['', '', '', '', ''],
['', '', '', '', ''],
['', '', '', '', ''],
['', '', '', '', '']],
vocab_list=vocab_bert
),
# test english text
dict(
first=5,
last=5,
expect_str=[['i', 'am', 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
lower_case=True,
vocab_list=vocab_bert
),
dict(
first=5,
last=5,
expect_str=[['I', "am", 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
lower_case=False,
vocab_list=vocab_bert
),
# test emoji tokens
dict(
first=6,
last=7,
expect_str=[
['😀', '', '', '😃', '', '', '😄', '', '', '😁', '', ''],
['', '', '']],
normalization_form=nlp.utils.NormalizeForm.NFKC,
vocab_list=vocab_bert
),
# test preserved tokens
dict(
first=8,
last=14,
expect_str=[
['[UNK]', '[CLS]'],
['[UNK]', '[SEP]'],
['[UNK]', '[UNK]'],
['[UNK]', '[PAD]'],
['[UNK]', '[MASK]'],
['[unused1]'],
['[unused10]']
],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
),
dict(
first=8,
last=14,
expect_str=[
['[UNK]', '[CLS]'],
['[UNK]', '[SEP]'],
['[UNK]', '[UNK]'],
['[UNK]', '[PAD]'],
['[UNK]', '[MASK]'],
['[unused1]'],
['[unused10]']
],
lower_case=True,
vocab_list=vocab_bert,
preserve_unused_token=True,
),
# test special symbol
dict(
first=15,
last=15,
expect_str=[['12', '+', '/', '-', '28', '=', '40', '/', '-', '16']],
preserve_unused_token=True,
vocab_list=vocab_bert
),
# test non-default parms
dict(
first=8,
last=8,
expect_str=[['[UNK]', ' ', '[CLS]']],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
keep_whitespace=True
),
dict(
first=8,
last=8,
expect_str=[['unused', ' ', '[CLS]']],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=True,
keep_whitespace=True,
unknown_token=''
),
dict(
first=8,
last=8,
expect_str=[['unused', ' ', '[', 'CLS', ']']],
lower_case=False,
vocab_list=vocab_bert,
preserve_unused_token=False,
keep_whitespace=True,
unknown_token=''
),
]
def check_bert_tokenizer(first, last, expect_str,
vocab_list,
suffix_indicator='##',
max_bytes_per_token=100, unknown_token='[UNK]',
lower_case=False, keep_whitespace=False,
normalization_form=nlp.utils.NormalizeForm.NONE,
preserve_unused_token=False):
dataset = ds.TextFileDataset(BERT_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
vocab = nlp.Vocab.from_list(vocab_list)
tokenizer_op = nlp.BertTokenizer(
vocab=vocab, suffix_indicator=suffix_indicator,
max_bytes_per_token=max_bytes_per_token, unknown_token=unknown_token,
lower_case=lower_case, keep_whitespace=keep_whitespace,
normalization_form=normalization_form,
preserve_unused_token=preserve_unused_token)
dataset = dataset.map(operations=tokenizer_op)
count = 0
for i in dataset.create_dict_iterator():
text = nlp.to_str(i['text'])
logger.info("Out:", text)
logger.info("Exp:", expect_str[count])
np.testing.assert_array_equal(text, expect_str[count])
count = count + 1
def test_bert_tokenizer():
"""
Test WordpieceTokenizer
"""
for paras in test_paras:
check_bert_tokenizer(**paras)
if __name__ == '__main__':
test_bert_tokenizer()