You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
5.7 KiB
182 lines
5.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing BertTokenizer op in DE
|
|
"""
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
import mindspore.dataset.text as nlp
|
|
|
|
BERT_TOKENIZER_FILE = "../data/dataset/testTokenizerData/bert_tokenizer.txt"
|
|
|
|
vocab_bert = [
|
|
"床", "前", "明", "月", "光", "疑", "是", "地", "上", "霜", "举", "头", "望", "低", "思", "故", "乡",
|
|
"繁", "體", "字", "嘿", "哈", "大", "笑", "嘻",
|
|
"i", "am", "mak", "make", "small", "mistake", "##s", "during", "work", "##ing", "hour",
|
|
"😀", "😃", "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16", " ", "I",
|
|
"[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]", "[unused1]", "[unused10]"
|
|
]
|
|
pad = '<pad>'
|
|
test_paras = [
|
|
# test chinese text
|
|
dict(
|
|
first=1,
|
|
last=4,
|
|
expect_str=[['床', '前', '明', '月', '光'],
|
|
['疑', '是', '地', '上', '霜'],
|
|
['举', '头', '望', '明', '月'],
|
|
['低', '头', '思', '故', '乡']],
|
|
vocab_list=vocab_bert
|
|
),
|
|
# test english text
|
|
dict(
|
|
first=5,
|
|
last=5,
|
|
expect_str=[['i', 'am', 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
|
|
lower_case=True,
|
|
vocab_list=vocab_bert
|
|
),
|
|
dict(
|
|
first=5,
|
|
last=5,
|
|
expect_str=[['I', "am", 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']],
|
|
lower_case=False,
|
|
vocab_list=vocab_bert
|
|
),
|
|
# test emoji tokens
|
|
dict(
|
|
first=6,
|
|
last=7,
|
|
expect_str=[
|
|
['😀', '嘿', '嘿', '😃', '哈', '哈', '😄', '大', '笑', '😁', '嘻', '嘻'],
|
|
['繁', '體', '字']],
|
|
normalization_form=nlp.utils.NormalizeForm.NFKC,
|
|
vocab_list=vocab_bert
|
|
),
|
|
# test preserved tokens
|
|
dict(
|
|
first=8,
|
|
last=14,
|
|
expect_str=[
|
|
['[UNK]', '[CLS]'],
|
|
['[UNK]', '[SEP]'],
|
|
['[UNK]', '[UNK]'],
|
|
['[UNK]', '[PAD]'],
|
|
['[UNK]', '[MASK]'],
|
|
['[unused1]'],
|
|
['[unused10]']
|
|
],
|
|
lower_case=False,
|
|
vocab_list=vocab_bert,
|
|
preserve_unused_token=True,
|
|
),
|
|
dict(
|
|
first=8,
|
|
last=14,
|
|
expect_str=[
|
|
['[UNK]', '[CLS]'],
|
|
['[UNK]', '[SEP]'],
|
|
['[UNK]', '[UNK]'],
|
|
['[UNK]', '[PAD]'],
|
|
['[UNK]', '[MASK]'],
|
|
['[unused1]'],
|
|
['[unused10]']
|
|
],
|
|
lower_case=True,
|
|
vocab_list=vocab_bert,
|
|
preserve_unused_token=True,
|
|
),
|
|
# test special symbol
|
|
dict(
|
|
first=15,
|
|
last=15,
|
|
expect_str=[['12', '+', '/', '-', '28', '=', '40', '/', '-', '16']],
|
|
preserve_unused_token=True,
|
|
vocab_list=vocab_bert
|
|
),
|
|
# test non-default parms
|
|
dict(
|
|
first=8,
|
|
last=8,
|
|
expect_str=[['[UNK]', ' ', '[CLS]']],
|
|
lower_case=False,
|
|
vocab_list=vocab_bert,
|
|
preserve_unused_token=True,
|
|
keep_whitespace=True
|
|
),
|
|
dict(
|
|
first=8,
|
|
last=8,
|
|
expect_str=[['unused', ' ', '[CLS]']],
|
|
lower_case=False,
|
|
vocab_list=vocab_bert,
|
|
preserve_unused_token=True,
|
|
keep_whitespace=True,
|
|
unknown_token=''
|
|
),
|
|
dict(
|
|
first=8,
|
|
last=8,
|
|
expect_str=[['unused', ' ', '[', 'CLS', ']']],
|
|
lower_case=False,
|
|
vocab_list=vocab_bert,
|
|
preserve_unused_token=False,
|
|
keep_whitespace=True,
|
|
unknown_token=''
|
|
),
|
|
]
|
|
|
|
|
|
def check_bert_tokenizer(first, last, expect_str,
|
|
vocab_list,
|
|
suffix_indicator='##',
|
|
max_bytes_per_token=100, unknown_token='[UNK]',
|
|
lower_case=False, keep_whitespace=False,
|
|
normalization_form=nlp.utils.NormalizeForm.NONE,
|
|
preserve_unused_token=False):
|
|
dataset = ds.TextFileDataset(BERT_TOKENIZER_FILE, shuffle=False)
|
|
if first > 1:
|
|
dataset = dataset.skip(first - 1)
|
|
if last >= first:
|
|
dataset = dataset.take(last - first + 1)
|
|
vocab = nlp.Vocab.from_list(vocab_list)
|
|
tokenizer_op = nlp.BertTokenizer(
|
|
vocab=vocab, suffix_indicator=suffix_indicator,
|
|
max_bytes_per_token=max_bytes_per_token, unknown_token=unknown_token,
|
|
lower_case=lower_case, keep_whitespace=keep_whitespace,
|
|
normalization_form=normalization_form,
|
|
preserve_unused_token=preserve_unused_token)
|
|
dataset = dataset.map(operations=tokenizer_op)
|
|
count = 0
|
|
for i in dataset.create_dict_iterator():
|
|
text = nlp.to_str(i['text'])
|
|
logger.info("Out:", text)
|
|
logger.info("Exp:", expect_str[count])
|
|
np.testing.assert_array_equal(text, expect_str[count])
|
|
count = count + 1
|
|
|
|
|
|
def test_bert_tokenizer():
|
|
"""
|
|
Test WordpieceTokenizer
|
|
"""
|
|
for paras in test_paras:
|
|
check_bert_tokenizer(**paras)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_bert_tokenizer()
|