You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/cnn_direction_model/eval.py

74 lines
2.7 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test direction model."""
import argparse
import os
import random
import numpy as np
from src.cnn_direction_model import CNNDirectionModel
from src.config import config1 as config
from src.dataset import create_dataset_eval
from mindspore import context
from mindspore import dataset as de
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
args_opt = parser.parse_args()
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
if __name__ == '__main__':
# init context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
# create dataset
dataset_name = config.dataset_name
dataset_lr, dataset_rl = create_dataset_eval(args_opt.dataset_path + "/" + dataset_name +
".mindrecord0", config=config, dataset_name=dataset_name)
step_size = dataset_lr.get_dataset_size()
print("step_size ", step_size)
# define net
net = CNNDirectionModel([3, 64, 48, 48, 64], [64, 48, 48, 64, 64], [256, 64], [64, 512])
# load checkpoint
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
# define loss, model
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="sum")
# define model
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy'})
# eval model
res_lr = model.eval(dataset_lr, dataset_sink_mode=False)
res_rl = model.eval(dataset_rl, dataset_sink_mode=False)
print("result on upright images:", res_lr, "ckpt=", args_opt.checkpoint_path)
print("result on 180 degrees rotated images:", res_rl, "ckpt=", args_opt.checkpoint_path)