You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
4.9 KiB
156 lines
4.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
create train or eval dataset.
|
|
"""
|
|
import os
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.vision.c_transforms as C
|
|
import mindspore.dataset.transforms.c_transforms as C2
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
|
|
def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
|
|
"""
|
|
create a train or evaluate cifar10 dataset for mobilenet
|
|
Args:
|
|
dataset_path(string): the path of dataset.
|
|
do_train(bool): whether dataset is used for train or eval.
|
|
repeat_num(int): the repeat times of dataset. Default: 1
|
|
batch_size(int): the batch size of dataset. Default: 32
|
|
target(str): the device target. Default: Ascend
|
|
|
|
Returns:
|
|
dataset
|
|
"""
|
|
if target == "Ascend":
|
|
device_num, rank_id = _get_rank_info()
|
|
else:
|
|
init()
|
|
rank_id = get_rank()
|
|
device_num = get_group_size()
|
|
|
|
if device_num == 1:
|
|
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=12, shuffle=True)
|
|
else:
|
|
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=12, shuffle=True,
|
|
num_shards=device_num, shard_id=rank_id)
|
|
|
|
# define map operations
|
|
trans = []
|
|
if do_train:
|
|
trans += [
|
|
C.RandomCrop((32, 32), (4, 4, 4, 4)),
|
|
C.RandomHorizontalFlip(prob=0.5)
|
|
]
|
|
|
|
trans += [
|
|
C.Resize((224, 224)),
|
|
C.Rescale(1.0 / 255.0, 0.0),
|
|
C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
|
|
C.HWC2CHW()
|
|
]
|
|
|
|
type_cast_op = C2.TypeCast(mstype.int32)
|
|
|
|
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
|
|
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12)
|
|
|
|
# apply batch operations
|
|
data_set = data_set.batch(batch_size, drop_remainder=True)
|
|
# apply dataset repeat operation
|
|
data_set = data_set.repeat(repeat_num)
|
|
|
|
return data_set
|
|
|
|
|
|
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
|
|
"""
|
|
create a train or eval imagenet2012 dataset for mobilenet
|
|
|
|
Args:
|
|
dataset_path(string): the path of dataset.
|
|
do_train(bool): whether dataset is used for train or eval.
|
|
repeat_num(int): the repeat times of dataset. Default: 1
|
|
batch_size(int): the batch size of dataset. Default: 32
|
|
target(str): the device target. Default: Ascend
|
|
|
|
Returns:
|
|
dataset
|
|
"""
|
|
if target == "Ascend":
|
|
device_num, rank_id = _get_rank_info()
|
|
else:
|
|
init()
|
|
rank_id = get_rank()
|
|
device_num = get_group_size()
|
|
|
|
if device_num == 1:
|
|
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True)
|
|
else:
|
|
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True,
|
|
num_shards=device_num, shard_id=rank_id)
|
|
|
|
image_size = 224
|
|
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
|
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
|
|
|
# define map operations
|
|
if do_train:
|
|
trans = [
|
|
C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
|
|
C.RandomHorizontalFlip(prob=0.5),
|
|
C.Normalize(mean=mean, std=std),
|
|
C.HWC2CHW()
|
|
]
|
|
else:
|
|
trans = [
|
|
C.Decode(),
|
|
C.Resize(256),
|
|
C.CenterCrop(image_size),
|
|
C.Normalize(mean=mean, std=std),
|
|
C.HWC2CHW()
|
|
]
|
|
|
|
type_cast_op = C2.TypeCast(mstype.int32)
|
|
|
|
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12)
|
|
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
|
|
|
|
# apply batch operations
|
|
data_set = data_set.batch(batch_size, drop_remainder=True)
|
|
|
|
# apply dataset repeat operation
|
|
data_set = data_set.repeat(repeat_num)
|
|
|
|
return data_set
|
|
|
|
|
|
def _get_rank_info():
|
|
"""
|
|
get rank size and rank id
|
|
"""
|
|
rank_size = int(os.environ.get("RANK_SIZE", 1))
|
|
|
|
if rank_size > 1:
|
|
rank_size = get_group_size()
|
|
rank_id = get_rank()
|
|
else:
|
|
rank_size = 1
|
|
rank_id = 0
|
|
|
|
return rank_size, rank_id
|