You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/resnext101/eval.py

252 lines
9.8 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Eval"""
import os
import time
import argparse
import datetime
import glob
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.context import ParallelMode
from mindspore.communication.management import init, get_rank, get_group_size, release
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from src.utils.logging import get_logger
from src.utils.auto_mixed_precision import auto_mixed_precision
from src.utils.var_init import load_pretrain_model
from src.image_classification import get_network
from src.dataset import classification_dataset
from src.config import config
class ParameterReduce(nn.Cell):
"""ParameterReduce"""
def __init__(self):
super(ParameterReduce, self).__init__()
self.cast = P.Cast()
self.reduce = P.AllReduce()
def construct(self, x):
one = self.cast(F.scalar_to_array(1.0), mstype.float32)
out = x * one
ret = self.reduce(out)
return ret
def parse_args(cloud_args=None):
"""parse_args"""
parser = argparse.ArgumentParser('mindspore classification test')
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
# dataset related
parser.add_argument('--data_dir', type=str, default='/opt/npu/datasets/classification/val', help='eval data dir')
parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per npu')
# network related
parser.add_argument('--graph_ckpt', action='store_true', default=True, help='graph ckpt or feed ckpt')
parser.add_argument('--pretrained', default='', type=str, help='fully path of pretrained model to load. '
'If it is a direction, it will test all ckpt')
# logging related
parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log')
parser.add_argument('--is_distributed', action='store_true', default=False, help='if multi device')
# roma obs
parser.add_argument('--train_url', type=str, default="", help='train url')
args, _ = parser.parse_known_args()
args = merge_args(args, cloud_args)
args.image_size = config.image_size
args.num_classes = config.num_classes
args.rank = config.rank
args.group_size = config.group_size
args.image_size = list(map(int, args.image_size.split(',')))
# init distributed
if args.is_distributed:
if args.platform == "Ascend":
init()
elif args.platform == "GPU":
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
else:
args.rank = 0
args.group_size = 1
args.outputs_dir = os.path.join(args.log_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
args.logger = get_logger(args.outputs_dir, args.rank)
return args
def get_top5_acc(top5_arg, gt_class):
sub_count = 0
for top5, gt in zip(top5_arg, gt_class):
if gt in top5:
sub_count += 1
return sub_count
def merge_args(args, cloud_args):
"""merge_args"""
args_dict = vars(args)
if isinstance(cloud_args, dict):
for key in cloud_args.keys():
val = cloud_args[key]
if key in args_dict and val:
arg_type = type(args_dict[key])
if arg_type is not type(None):
val = arg_type(val)
args_dict[key] = val
return args
def get_result(args, model, top1_correct, top5_correct, img_tot):
"""calculate top1 and top5 value."""
results = [[top1_correct], [top5_correct], [img_tot]]
args.logger.info('before results={}'.format(results))
if args.is_distributed:
model_md5 = model.replace('/', '')
tmp_dir = '/cache'
if not os.path.exists(tmp_dir):
os.mkdir(tmp_dir)
top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(args.rank, model_md5)
top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(args.rank, model_md5)
img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(args.rank, model_md5)
np.save(top1_correct_npy, top1_correct)
np.save(top5_correct_npy, top5_correct)
np.save(img_tot_npy, img_tot)
while True:
rank_ok = True
for other_rank in range(args.group_size):
top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5)
top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5)
img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5)
if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) or \
not os.path.exists(img_tot_npy):
rank_ok = False
if rank_ok:
break
top1_correct_all = 0
top5_correct_all = 0
img_tot_all = 0
for other_rank in range(args.group_size):
top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5)
top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5)
img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5)
top1_correct_all += np.load(top1_correct_npy)
top5_correct_all += np.load(top5_correct_npy)
img_tot_all += np.load(img_tot_npy)
results = [[top1_correct_all], [top5_correct_all], [img_tot_all]]
results = np.array(results)
else:
results = np.array(results)
args.logger.info('after results={}'.format(results))
return results
def test(cloud_args=None):
"""test"""
args = parse_args(cloud_args)
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.platform, save_graphs=False)
if os.getenv('DEVICE_ID', "not_set").isdigit():
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
# init distributed
if args.is_distributed:
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
gradients_mean=True)
args.logger.save_args(args)
# network
args.logger.important_info('start create network')
if os.path.isdir(args.pretrained):
models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt')))
print(models)
if args.graph_ckpt:
f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_')[0])
else:
f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1])
args.models = sorted(models, key=f)
else:
args.models = [args.pretrained,]
for model in args.models:
de_dataset = classification_dataset(args.data_dir, image_size=args.image_size,
per_batch_size=args.per_batch_size,
max_epoch=1, rank=args.rank, group_size=args.group_size,
mode='eval')
eval_dataloader = de_dataset.create_tuple_iterator(output_numpy=True, num_epochs=1)
network = get_network(num_classes=args.num_classes, platform=args.platform)
load_pretrain_model(model, network, args)
img_tot = 0
top1_correct = 0
top5_correct = 0
if args.platform == "Ascend":
network.to_float(mstype.float16)
else:
auto_mixed_precision(network)
network.set_train(False)
t_end = time.time()
it = 0
for data, gt_classes in eval_dataloader:
output = network(Tensor(data, mstype.float32))
output = output.asnumpy()
top1_output = np.argmax(output, (-1))
top5_output = np.argsort(output)[:, -5:]
t1_correct = np.equal(top1_output, gt_classes).sum()
top1_correct += t1_correct
top5_correct += get_top5_acc(top5_output, gt_classes)
img_tot += args.per_batch_size
if args.rank == 0 and it == 0:
t_end = time.time()
it = 1
if args.rank == 0:
time_used = time.time() - t_end
fps = (img_tot - args.per_batch_size) * args.group_size / time_used
args.logger.info('Inference Performance: {:.2f} img/sec'.format(fps))
results = get_result(args, model, top1_correct, top5_correct, img_tot)
top1_correct = results[0, 0]
top5_correct = results[1, 0]
img_tot = results[2, 0]
acc1 = 100.0 * top1_correct / img_tot
acc5 = 100.0 * top5_correct / img_tot
args.logger.info('after allreduce eval: top1_correct={}, tot={},'
'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1))
args.logger.info('after allreduce eval: top5_correct={}, tot={},'
'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5))
if args.is_distributed:
release()
if __name__ == "__main__":
test()