You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/c_api_samplers_test.cc

301 lines
10 KiB

/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/ir/datasetops/source/samplers/samplers_ir.h"
#include "minddata/dataset/include/datasets.h"
#include <functional>
using namespace mindspore::dataset;
using mindspore::dataset::Tensor;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
std::shared_ptr<Sampler> sampl = std::make_shared<DistributedSampler>(2, 1);
EXPECT_NE(sampl, nullptr);
sampl = std::make_shared<PKSampler>(3);
EXPECT_NE(sampl, nullptr);
sampl = std::make_shared<RandomSampler>(false, 12);
EXPECT_NE(sampl, nullptr);
sampl = std::make_shared<SequentialSampler>(0, 12);
EXPECT_NE(sampl, nullptr);
std::vector<double> weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1};
sampl = std::make_shared<WeightedRandomSampler>(weights, 12);
EXPECT_NE(sampl, nullptr);
std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
sampl = std::make_shared<SubsetSampler>(indices);
EXPECT_NE(sampl, nullptr);
sampl = std::make_shared<SubsetRandomSampler>(indices);
EXPECT_NE(sampl, nullptr);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampl);
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 12);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestNoSamplerSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNoSamplerSuccess1.";
// Test building a dataset with no sampler provided (defaults to random sampler
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false);
EXPECT_NE(ds, nullptr);
// Iterate the dataset and get each row
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto label = row["label"];
iter->GetNextRow(&row);
}
EXPECT_EQ(i, ds->GetDatasetSize());
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerSuccess1.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=-1, even_dist=true
std::shared_ptr<Sampler> sampler = std::make_shared<DistributedSampler>(4, 0, false, 0, 0, -1, true);
EXPECT_NE(sampler, nullptr);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate the dataset and get each row
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto label = row["label"];
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 11);
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerSuccess2.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=-1, even_dist=true
auto sampler(new DistributedSampler(4, 0, false, 0, 0, -1, true));
// Note that with new, we have to explicitly delete the allocated object as shown below.
// Note: No need to check for output after calling API class constructor
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate the dataset and get each row
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto label = row["label"];
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 11);
iter->Stop();
// Delete allocated objects with raw pointers
delete sampler;
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess3) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerSuccess3.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=-1, even_dist=true
DistributedSampler sampler = DistributedSampler(4, 0, false, 0, 0, -1, true);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate the dataset and get each row
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto label = row["label"];
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 11);
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerFail1.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=5, even_dist=true
// offset=5 which is greater than num_shards=4 --> will fail later
std::shared_ptr<Sampler> sampler = std::make_shared<DistributedSampler>(4, 0, false, 0, 0, 5, false);
EXPECT_NE(sampler, nullptr);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate will fail because sampler is not initiated successfully.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerFail2) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerFail2.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=5, even_dist=true
// offset=5 which is greater than num_shards=4 --> will fail later
auto sampler(new DistributedSampler(4, 0, false, 0, 0, 5, false));
// Note that with new, we have to explicitly delete the allocated object as shown below.
// Note: No need to check for output after calling API class constructor
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate will fail because sampler is not initiated successfully.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
// Delete allocated objects with raw pointers
delete sampler;
}
TEST_F(MindDataTestPipeline, TestDistributedSamplerFail3) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDistributedSamplerFail3.";
// Test basic setting of distributed_sampler
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=5, even_dist=true
// offset=5 which is greater than num_shards=4 --> will fail later
DistributedSampler sampler = DistributedSampler(4, 0, false, 0, 0, 5, false);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate will fail because sampler is not initiated successfully.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_EQ(iter, nullptr);
}
TEST_F(MindDataTestPipeline, TestSamplerAddChild) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSamplerAddChild.";
auto sampler = std::make_shared<DistributedSampler>(1, 0, false, 5, 0, -1, true);
EXPECT_NE(sampler, nullptr);
auto child_sampler = std::make_shared<SequentialSampler>();
EXPECT_NE(child_sampler, nullptr);
sampler->AddChild(child_sampler);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampler);
EXPECT_NE(ds, nullptr);
// Iterate the dataset and get each row
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
std::unordered_map<std::string, mindspore::MSTensor> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
iter->GetNextRow(&row);
}
EXPECT_EQ(ds->GetDatasetSize(), 5);
iter->Stop();
}