You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
7.6 KiB
216 lines
7.6 KiB
/**
|
|
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "common/common.h"
|
|
#include "utils/ms_utils.h"
|
|
#include "minddata/dataset/core/client.h"
|
|
#include "minddata/dataset/core/global_context.h"
|
|
#include "minddata/dataset/engine/datasetops/source/manifest_op.h"
|
|
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
|
#include "minddata/dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
|
|
#include "minddata/dataset/util/status.h"
|
|
#include "gtest/gtest.h"
|
|
#include "utils/log_adapter.h"
|
|
#include "securec.h"
|
|
|
|
namespace common = mindspore::common;
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::MsLogLevel::ERROR;
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
using mindspore::LogStream;
|
|
|
|
std::shared_ptr<RepeatOp> Repeat(int repeatCnt);
|
|
|
|
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
|
|
|
|
std::shared_ptr<ManifestOp> Manifest(int32_t num_works, int32_t rows, int32_t conns, const std::string &file,
|
|
std::string usage = "train", std::shared_ptr<SamplerRT> sampler = nullptr,
|
|
std::map<std::string, int32_t> map = {}, bool decode = false) {
|
|
std::shared_ptr<ManifestOp> so;
|
|
ManifestOp::Builder builder;
|
|
Status rc = builder.SetNumWorkers(num_works)
|
|
.SetManifestFile(file)
|
|
.SetOpConnectorSize(conns)
|
|
.SetSampler(std::move(sampler))
|
|
.SetClassIndex(map)
|
|
.SetDecode(decode)
|
|
.SetUsage(usage)
|
|
.Build(&so);
|
|
return so;
|
|
}
|
|
|
|
class MindDataTestManifest : public UT::DatasetOpTesting {
|
|
protected:
|
|
};
|
|
|
|
TEST_F(MindDataTestManifest, TestSequentialManifestWithRepeat) {
|
|
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
|
auto op1 = Manifest(16, 2, 32, file);
|
|
auto op2 = Repeat(2);
|
|
op1->set_total_repeats(2);
|
|
op1->set_num_repeats_per_epoch(2);
|
|
auto tree = Build({op1, op2});
|
|
tree->Prepare();
|
|
uint32_t res[] = {0, 1, 0, 1};
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(res[i] == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 4);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestManifest, TestSubsetRandomSamplerManifest) {
|
|
std::vector<int64_t> indices({1});
|
|
int64_t num_samples = 0;
|
|
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
|
|
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
|
// Expect 6 samples for label 0 and 1
|
|
auto tree = Build({Manifest(16, 2, 32, file, "train", std::move(sampler))});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
rc = di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_EQ(label, 1);
|
|
}
|
|
EXPECT_TRUE(i == 1);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestManifest, MindDataTestManifestClassIndex) {
|
|
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
|
std::map<std::string, int32_t> map;
|
|
map["cat"] = 111; // forward slash is not good, but we need to add this somewhere, also in windows, its a '\'
|
|
map["dog"] = 222; // forward slash is not good, but we need to add this somewhere, also in windows, its a '\'
|
|
map["wrong folder name"] = 1234; // this is skipped
|
|
auto tree = Build({Manifest(16, 2, 32, file, "train", nullptr, map)});
|
|
uint64_t res[2] = {111, 222};
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(label == res[i]);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 2);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestManifest, MindDataTestManifestNumSamples) {
|
|
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
|
int64_t num_samples = 1;
|
|
int64_t start_index = 0;
|
|
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
|
auto op1 = Manifest(16, 2, 32, file, "train", std::move(seq_sampler), {});
|
|
auto op2 = Repeat(4);
|
|
op1->set_total_repeats(4);
|
|
op1->set_num_repeats_per_epoch(4);
|
|
auto tree = Build({op1, op2});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(0 == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 4);
|
|
}
|
|
}
|
|
|
|
TEST_F(MindDataTestManifest, MindDataTestManifestEval) {
|
|
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
|
int64_t num_samples = 1;
|
|
int64_t start_index = 0;
|
|
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
|
auto tree = Build({Manifest(16, 2, 32, file, "eval", std::move(seq_sampler), {})});
|
|
tree->Prepare();
|
|
Status rc = tree->Launch();
|
|
if (rc.IsError()) {
|
|
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
|
EXPECT_TRUE(false);
|
|
} else {
|
|
DatasetIterator di(tree);
|
|
TensorMap tensor_map;
|
|
di.GetNextAsMap(&tensor_map);
|
|
EXPECT_TRUE(rc.IsOk());
|
|
uint64_t i = 0;
|
|
int32_t label = 0;
|
|
while (tensor_map.size() != 0) {
|
|
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
|
|
EXPECT_TRUE(0 == label);
|
|
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
|
|
i++;
|
|
di.GetNextAsMap(&tensor_map);
|
|
}
|
|
EXPECT_TRUE(i == 1);
|
|
}
|
|
}
|