You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/pad_end_op_test.cc

137 lines
4.6 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/kernels/data/pad_end_op.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::LogStream;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::MsLogLevel::INFO;
class MindDataTestPadEndOp : public UT::Common {
protected:
MindDataTestPadEndOp() {}
};
TEST_F(MindDataTestPadEndOp, TestOp) {
MS_LOG(INFO) << "Doing MindDataTestPadEndOp.";
// first set of testunits for numeric values
TensorShape pad_data_shape({1});
// prepare input tensor
std::vector<float> orig1 = {1, 1, 1, 1};
TensorShape input_shape1({2, 2});
std::vector<TensorShape> input_shape1_vector = {input_shape1};
std::shared_ptr<Tensor> input1;
Tensor::CreateFromVector(orig1, input_shape1, &input1);
// pad_shape
TensorShape pad_shape1[3] = {TensorShape({3, 3}), TensorShape({2, 4}), TensorShape({4, 2})};
// value to pad
std::vector<std::vector<float>> pad_data1 = {{0}, {3.5}, {3.5}};
std::shared_ptr<Tensor> expected1[3];
// expected tensor output for testunit 1
std::vector<float> out1 = {1, 1, 0, 1, 1, 0, 0, 0, 0};
Tensor::CreateFromVector(out1, pad_shape1[0], &(expected1[0]));
// expected tensor output for testunit 2
std::vector<float> out2 = {1, 1, 3.5, 3.5, 1, 1, 3.5, 3.5};
Tensor::CreateFromVector(out2, pad_shape1[1], &(expected1[1]));
// expected tensor output for testunit 3
std::vector<float> out3 = {1, 1, 1, 1, 3.5, 3.5, 3.5, 3.5};
Tensor::CreateFromVector(out3, pad_shape1[2], &(expected1[2]));
// run the PadEndOp
for (auto i = 0; i < 3; i++) {
std::shared_ptr<Tensor> output;
std::vector<TensorShape> output_shape = {TensorShape({})};
std::shared_ptr<Tensor> pad_value1;
Tensor::CreateFromVector(pad_data1[i], pad_data_shape, &pad_value1);
std::unique_ptr<PadEndOp> op(new PadEndOp(pad_shape1[i], pad_value1));
Status s = op->Compute(input1, &output);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected1[i]->shape());
ASSERT_TRUE(output->type() == expected1[i]->type());
MS_LOG(DEBUG) << *output << std::endl;
MS_LOG(DEBUG) << *expected1[i] << std::endl;
ASSERT_TRUE(*output == *expected1[i]);
s = op->OutputShape(input_shape1_vector, output_shape);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output_shape.size() == 1);
ASSERT_TRUE(output->shape() == output_shape[0]);
}
// second set of testunits for string
// input tensor
std::vector<std::string> orig2 = {"this", "is"};
TensorShape input_shape2({2});
std::vector<TensorShape> input_shape2_vector = {input_shape2};
std::shared_ptr<Tensor> input2;
Tensor::CreateFromVector(orig2, input_shape2, &input2);
// pad_shape
TensorShape pad_shape2[3] = {TensorShape({5}), TensorShape({2}), TensorShape({10})};
// pad value
std::vector<std::string> pad_data2[3] = {{""}, {"P"}, {" "}};
std::shared_ptr<Tensor> pad_value2[3];
// expected output for 3 testunits
std::shared_ptr<Tensor> expected2[3];
std::vector<std::string> outstring[3] = {
{"this", "is", "", "", ""}, {"this", "is"}, {"this", "is", " ", " ", " ", " ", " ", " ", " ", " "}};
for (auto i = 0; i < 3; i++) {
// pad value
Tensor::CreateFromVector(pad_data2[i], pad_data_shape, &pad_value2[i]);
std::shared_ptr<Tensor> output;
std::vector<TensorShape> output_shape = {TensorShape({})};
std::unique_ptr<PadEndOp> op(new PadEndOp(pad_shape2[i], pad_value2[i]));
Status s = op->Compute(input2, &output);
Tensor::CreateFromVector(outstring[i], pad_shape2[i], &expected2[i]);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected2[i]->shape());
ASSERT_TRUE(output->type() == expected2[i]->type());
MS_LOG(DEBUG) << *output << std::endl;
MS_LOG(DEBUG) << *expected2[i] << std::endl;
ASSERT_TRUE(*output == *expected2[i]);
s = op->OutputShape(input_shape2_vector, output_shape);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output_shape.size() == 1);
ASSERT_TRUE(output->shape() == output_shape[0]);
}
MS_LOG(INFO) << "MindDataTestPadEndOp end.";
}