You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
1.8 KiB
50 lines
1.8 KiB
/**
|
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <opencv2/imgcodecs.hpp>
|
|
#include "common/common.h"
|
|
#include "common/cvop_common.h"
|
|
#include "minddata/dataset/kernels/image/random_rotation_op.h"
|
|
#include "minddata/dataset/core/cv_tensor.h"
|
|
#include "utils/log_adapter.h"
|
|
|
|
using namespace mindspore::dataset;
|
|
using mindspore::MsLogLevel::INFO;
|
|
using mindspore::ExceptionType::NoExceptionType;
|
|
using mindspore::LogStream;
|
|
|
|
class MindDataTestRandomRotationOp : public UT::CVOP::CVOpCommon {
|
|
public:
|
|
MindDataTestRandomRotationOp() : CVOpCommon() {}
|
|
};
|
|
|
|
TEST_F(MindDataTestRandomRotationOp, TestOp) {
|
|
MS_LOG(INFO) << "Doing MindDataTestRandomRotationOp::TestOp.";
|
|
std::shared_ptr<Tensor> output_tensor;
|
|
float sDegree = -180;
|
|
float eDegree = 180;
|
|
// use compute center to use for rotation
|
|
float xCenter = -1;
|
|
float yCenter = -1;
|
|
bool expand = false;
|
|
std::unique_ptr<RandomRotationOp> op(new RandomRotationOp(
|
|
sDegree, eDegree, xCenter, yCenter, InterpolationMode::kLinear, expand));
|
|
EXPECT_TRUE(op->OneToOne());
|
|
Status s = op->Compute(input_tensor_, &output_tensor);
|
|
EXPECT_TRUE(s.IsOk());
|
|
EXPECT_EQ(input_tensor_->shape()[0], output_tensor->shape()[0]);
|
|
EXPECT_EQ(input_tensor_->shape()[1], output_tensor->shape()[1]);
|
|
}
|