You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/parallel/virtual_dataset_test.cc

176 lines
5.5 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <list>
#include <vector>
#include "common/common_test.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/ops_info/virtual_dataset_info.h"
#include "frontend/parallel/device_manager.h"
#include "frontend/parallel/step_parallel.h"
namespace mindspore {
namespace parallel {
class VirtualDatasetInfo;
using VirtualDatasetInfoPtr = std::shared_ptr<VirtualDatasetInfo>;
VirtualDatasetInfoPtr virtual_dataset;
class TestVirtualDatasetInfo : public UT::Common {
public:
TestVirtualDatasetInfo() {}
void SetUp();
void TearDown() {}
};
void TestVirtualDatasetInfo::SetUp() {
RankList dev_list;
for (int32_t i = 0; i < 130; i++) {
dev_list.push_back(i);
}
RankList stage_map;
stage_map.push_back(16);
stage_map.push_back(114);
int32_t local_dev = 0;
// create a new g_device_manager
g_device_manager = std::make_shared<DeviceManager>();
g_device_manager->Init(dev_list, local_dev, stage_map, "hccl");
std::unordered_map<std::string, ValuePtr> attr;
Shapes inputs_shape = {{128, 32}, {1280, 320}, {12800, 3200}};
Shapes outputs_shape = {{128, 32}, {1280, 320}, {12800, 3200}};
virtual_dataset = std::make_shared<VirtualDatasetInfo>("virtual_dataset_info", inputs_shape, outputs_shape, attr);
}
TEST_F(TestVirtualDatasetInfo, InferDevMatrixShape1) {
Strategys inputs = {{16, 1}, {16, 1}, {16, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
virtual_dataset->Init(strategy);
Shape dev_matrix_shape = virtual_dataset->dev_matrix_shape();
Shape expect = {16};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestVirtualDatasetInfo, InferDevMatrixShape2) {
Strategys inputs = {{8, 1}, {8, 1}, {8, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
virtual_dataset->Init(strategy);
Shape dev_matrix_shape = virtual_dataset->dev_matrix_shape();
Shape expect = {8, 2};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestVirtualDatasetInfo, InferSliceShape1) {
Strategys str = {{8, 1}, {8, 1}, {8, 1}};
StrategyPtr strategy = NewStrategy(0, str);
virtual_dataset->Init(strategy);
std::vector<TensorInfo> inputs = virtual_dataset->inputs_tensor_info();
std::vector<TensorInfo> outputs = virtual_dataset->outputs_tensor_info();
Shape input_slice_shape_expect = {16, 32};
Shape output_slice_shape_expect = {16, 32};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo output_tensor_info = outputs.at(0);
Shape input_slice_shape = input_tensor_info.slice_shape();
Shape output_slice_shape = output_tensor_info.slice_shape();
ASSERT_EQ(input_slice_shape, input_slice_shape_expect);
ASSERT_EQ(output_slice_shape, output_slice_shape_expect);
Shape input_slice_shape_expect1 = {160, 320};
Shape output_slice_shape_expect1 = {160, 320};
TensorInfo input_tensor_info1 = inputs.at(1);
TensorInfo output_tensor_info1 = outputs.at(1);
Shape input_slice_shape1 = input_tensor_info1.slice_shape();
Shape output_slice_shape1 = output_tensor_info1.slice_shape();
ASSERT_EQ(input_slice_shape1, input_slice_shape_expect1);
ASSERT_EQ(output_slice_shape1, output_slice_shape_expect1);
Shape input_slice_shape_expect2 = {1600, 3200};
Shape output_slice_shape_expect2 = {1600, 3200};
TensorInfo input_tensor_info2 = inputs.at(2);
TensorInfo output_tensor_info2 = outputs.at(2);
Shape input_slice_shape2 = input_tensor_info2.slice_shape();
Shape output_slice_shape2 = output_tensor_info2.slice_shape();
ASSERT_EQ(input_slice_shape2, input_slice_shape_expect2);
ASSERT_EQ(output_slice_shape2, output_slice_shape_expect2);
}
TEST_F(TestVirtualDatasetInfo, GetTensorLayout1) {
Strategys str = {{8, 1}, {8, 1}, {8, 1}};
StrategyPtr strategy = NewStrategy(0, str);
virtual_dataset->Init(strategy);
std::vector<TensorInfo> inputs = virtual_dataset->inputs_tensor_info();
std::vector<TensorInfo> outputs = virtual_dataset->outputs_tensor_info();
TensorMap input_expect = {1, -1};
TensorMap output_expect = {1, -1};
TensorInfo input_tensor_info = inputs.at(0);
TensorInfo output_tensor_info = outputs.at(0);
Map input_tensor_map = input_tensor_info.tensor_layout().origin_tensor_map();
Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map();
ASSERT_EQ(input_tensor_map.array(), input_expect);
ASSERT_EQ(output_tensor_map.array(), output_expect);
}
TEST_F(TestVirtualDatasetInfo, GetForwardOp1) {
Strategys inputs = {{8, 1}, {8, 1}, {8, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
virtual_dataset->Init(strategy);
OperatorVector forward_op = virtual_dataset->forward_op();
size_t size = forward_op.size();
ASSERT_EQ(size, 0);
}
TEST_F(TestVirtualDatasetInfo, GetMirrorOPs1) {
Strategys inputs = {{8, 1}, {8, 1}, {8, 1}};
StrategyPtr strategy = NewStrategy(0, inputs);
virtual_dataset->Init(strategy);
MirrorOps mirror_ops = virtual_dataset->mirror_ops();
size_t size = mirror_ops.size();
// no broadcast
ASSERT_EQ(size, 0);
// ASSERT_EQ(size, 3);
}
} // namespace parallel
} // namespace mindspore