You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/optimizer/test_auto_grad.py

141 lines
4.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import context
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import composite as C
grad_all = C.GradOperation(get_all=True)
class CropAndResizeNet(nn.Cell):
def __init__(self, crop_size):
super(CropAndResizeNet, self).__init__()
self.crop_and_resize = P.CropAndResize()
self.crop_size = crop_size
def construct(self, x, boxes, box_indices):
return self.crop_and_resize(x, boxes, box_indices, self.crop_size)
def bprop(self, x, boxes, box_indices, out, dout):
return x, boxes, box_indices
class TestUserDefinedBpropNet(nn.Cell):
def __init__(self, in_channel, out_channel):
super(TestUserDefinedBpropNet, self).__init__()
self.relu = nn.ReLU()
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=2, stride=1, has_bias=False,
weight_init='ones', pad_mode='same')
self.crop = CropAndResizeNet((10, 10))
self.boxes = Tensor(np.ones((128, 4)).astype(np.float32))
self.box_indices = Tensor(np.ones((128,)).astype(np.int32))
def construct(self, x):
x = self.relu(x)
x = self.conv(x)
x = self.crop(x, self.boxes, self.box_indices)
return x
class TestUserDefinedBpropGradNet(nn.Cell):
def __init__(self, net):
super(TestUserDefinedBpropGradNet, self).__init__()
self.net = net
def construct(self, x):
return grad_all(self.net)(x)
def test_user_defined_bprop():
context.set_context(mode=context.GRAPH_MODE)
net = TestUserDefinedBpropNet(3, 10)
grad_net = TestUserDefinedBpropGradNet(net)
x = Tensor(np.ones((128, 3, 12, 12)).astype(np.float32))
grad_net(x)
class SinNet(nn.Cell):
def __init__(self):
super(SinNet, self).__init__()
self.sin = ops.Sin()
def construct(self, x):
out = self.sin(x)
return out
class SinGrad(nn.Cell):
def __init__(self, network):
super(SinGrad, self).__init__()
self.grad = ops.GradOperation()
self.network = network
def construct(self, x):
gout = self.grad(self.network)(x)
return gout
class SinGradSec(nn.Cell):
def __init__(self, network):
super(SinGradSec, self).__init__()
self.grad = ops.GradOperation()
self.network = network
def construct(self, x):
gout = self.grad(self.network)(x)
return gout
def test_second_grad_with_j_primitive():
context.set_context(mode=context.GRAPH_MODE)
net = SinNet()
first_grad = SinGrad(net)
second_grad = SinGradSec(first_grad)
x = Tensor(np.array([1.0], dtype=np.float32))
second_grad(x)
# A CNode being used as FV is MapMorphism after MapMorphism of call-site CNode;
def test_ad_fv_cnode_order():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
# cnode xay is not being MapMorphism when cnode second_level() is being MapMorphism and
# BackPropagateFv as MapMorphism is started from output node and from left to right order.
def construct(self, x, y):
def first_level():
xay = x + y
def second_level():
return xay
return second_level() + xay
return first_level()
input_x = Tensor(np.array([1.0], dtype=np.float32))
input_y = Tensor(np.array([2.0], dtype=np.float32))
net = Net()
net.add_flags_recursive(defer_inline=True)
grad_net = grad_all(net)
grad_net(input_x, input_y)