You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.2 KiB
82 lines
2.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_dictionary """
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.nn import Cell
|
|
|
|
|
|
class Net1(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def construct(self, x):
|
|
dic = {'x': 0, 'y': 1}
|
|
output = []
|
|
for i in dic.keys():
|
|
output.append(i)
|
|
for j in dic.values():
|
|
output.append(j)
|
|
return output
|
|
|
|
class Net2(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def construct(self, x):
|
|
dic = {'x': x, 'y': 1}
|
|
output = []
|
|
for i in dic.keys():
|
|
output.append(i)
|
|
for j in dic.values():
|
|
output.append(j)
|
|
return output
|
|
|
|
class Net3(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def construct(self, x):
|
|
dic = {'x': 0}
|
|
dic['y'] = (0, 1)
|
|
output = []
|
|
for i in dic.keys():
|
|
output.append(i)
|
|
for j in dic.values():
|
|
output.append(j)
|
|
return output
|
|
|
|
def test_dict1():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
net = Net1()
|
|
out_me = net(input_me)
|
|
assert out_me == ('x', 'y', 0, 1)
|
|
|
|
|
|
def test_dict2():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
net = Net2()
|
|
net(input_me)
|
|
|
|
def test_dict3():
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
net = Net3()
|
|
out_me = net(input_me)
|
|
assert out_me == ('x', 'y', 0, (0, 1))
|