You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_tensoradd.py

132 lines
4.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target='GPU')
class TensroAdd(nn.Cell):
def __init__(self):
super(TensroAdd, self).__init__()
self.add = P.TensorAdd()
self.x = Parameter(initializer(
Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x')
self.y = Parameter(initializer(
Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y')
self.x1 = Parameter(initializer(
Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1')
self.y1 = Parameter(initializer(
Tensor(np.array([2]).astype(np.float32)), [1]), name='y1')
self.x2 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='x2')
self.y2 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y2')
self.x3 = Parameter(initializer(
Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(np.float32)), [1, 1, 3, 3]), name='x3')
self.y3 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y3')
@ms_function
def construct(self):
return (
self.add(self.x, self.y), self.add(self.x1, self.y1), self.add(self.x2, self.y2),
self.add(self.x3, self.y3))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_TensroAdd():
add = TensroAdd()
output = add()
expect0 = np.array([])
expect1 = np.array([2, 3, 4])
expect2 = np.array(
[[[[0., 2., 4.],
[6., 8., 10.],
[12., 14., 16.]],
[[18., 20., 22.],
[24., 26., 28.],
[30., 32., 34.]],
[[36., 38., 40.],
[42., 44., 46.],
[48., 50., 52.]]],
[[[54., 56., 58.],
[60., 62., 64.],
[66., 68., 70.]],
[[72., 74., 76.],
[78., 80., 82.],
[84., 86., 88.]],
[[90., 92., 94.],
[96., 98., 100.],
[102., 104., 106.]]],
[[[108., 110., 112.],
[114., 116., 118.],
[120., 122., 124.]],
[[126., 128., 130.],
[132., 134., 136.],
[138., 140., 142.]],
[[144., 146., 148.],
[150., 152., 154.],
[156., 158., 160.]]]])
expect3 = np.array(
[[[[0., 2., 4.],
[6., 8., 10.],
[12., 14., 16.]],
[[9., 11., 13.],
[15., 17., 19.],
[21., 23., 25.]],
[[18., 20., 22.],
[24., 26., 28.],
[30., 32., 34.]]],
[[[27., 29., 31.],
[33., 35., 37.],
[39., 41., 43.]],
[[36., 38., 40.],
[42., 44., 46.],
[48., 50., 52.]],
[[45., 47., 49.],
[51., 53., 55.],
[57., 59., 61.]]],
[[[54., 56., 58.],
[60., 62., 64.],
[66., 68., 70.]],
[[63., 65., 67.],
[69., 71., 73.],
[75., 77., 79.]],
[[72., 74., 76.],
[78., 80., 82.],
[84., 86., 88.]]]]
)
assert (output[0].asnumpy() == expect0).all()
assert (output[1].asnumpy() == expect1).all()
assert (output[2].asnumpy() == expect2).all()
assert (output[3].asnumpy() == expect3).all()