You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.1 KiB
63 lines
2.1 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_conv """
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
|
|
weight = Tensor(np.ones([2, 2]))
|
|
in_channels = 3
|
|
out_channels = 64
|
|
kernel_size = 3
|
|
|
|
|
|
def test_check_conv2d_1():
|
|
m = nn.Conv2d(3, 64, 3, bias_init='zeros')
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
output_np = output.asnumpy()
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
def test_check_conv2d_2():
|
|
Tensor(np.ones([2, 2]))
|
|
m = nn.Conv2d(3, 64, 4, has_bias=False, weight_init='normal')
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
output_np = output.asnumpy()
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
def test_check_conv2d_3():
|
|
Tensor(np.ones([2, 2]))
|
|
m = nn.Conv2d(3, 64, (3, 3))
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
output_np = output.asnumpy()
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
def test_check_conv2d_4():
|
|
Tensor(np.ones([2, 2]))
|
|
m = nn.Conv2d(3, 64, (3, 3), stride=2, pad_mode='pad', padding=4)
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
output_np = output.asnumpy()
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
def test_check_conv2d_bias():
|
|
m = nn.Conv2d(3, 64, 3, bias_init='zeros')
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
output_np = output.asnumpy()
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|