You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pipeline/parse/test_dictionary.py

103 lines
2.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_dictionary """
import numpy as np
from mindspore import Tensor, context
from mindspore.nn import Cell
context.set_context(mode=context.GRAPH_MODE)
class Net1(Cell):
def __init__(self):
super().__init__()
def construct(self, x):
dic = {'x': 0, 'y': 1}
output = []
for i in dic.keys():
output.append(i)
for j in dic.values():
output.append(j)
return output
class Net2(Cell):
def __init__(self):
super().__init__()
def construct(self, x):
dic = {'x': x, 'y': 1}
output = []
for i in dic.keys():
output.append(i)
for j in dic.values():
output.append(j)
return output
class Net3(Cell):
def __init__(self):
super().__init__()
def construct(self, x):
dic = {'x': 0}
dic['y'] = (0, 1)
output = []
for i in dic.keys():
output.append(i)
for j in dic.values():
output.append(j)
return output
def test_dict1():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
net = Net1()
out_me = net(input_me)
assert out_me == ('x', 'y', 0, 1)
def test_dict2():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
net = Net2()
net(input_me)
def test_dict3():
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
net = Net3()
out_me = net(input_me)
assert out_me == ('x', 'y', 0, (0, 1))
def test_dict4():
class Net(Cell):
def __init__(self):
super().__init__()
def construct(self, tuple_x):
output = tuple_x + tuple_x
return output
x = (1, Tensor([1, 2, 3]), {"a": Tensor([1, 2, 3]), "b": 1})
net = Net()
out_me = net(x)
assert out_me == x + x