You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
1.9 KiB
73 lines
1.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_mean """
|
|
import mindspore as ms
|
|
from mindspore import nn
|
|
from mindspore import context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
def test_mean():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
|
|
|
|
def construct(self):
|
|
return self.value.mean()
|
|
|
|
net = Net()
|
|
net()
|
|
|
|
|
|
def test_mean_axis():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
|
|
|
|
def construct(self):
|
|
return self.value.mean(axis=1)
|
|
|
|
net = Net()
|
|
net()
|
|
|
|
|
|
def test_mean_parameter():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def construct(self, x):
|
|
return x.mean()
|
|
|
|
x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32)
|
|
net = Net()
|
|
net(x)
|
|
|
|
|
|
def test_mean_parameter_axis():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def construct(self, x):
|
|
return x.mean(axis=1)
|
|
|
|
x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32)
|
|
net = Net()
|
|
net(x)
|