You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/probability/zhusuan/vae/utils.py

88 lines
3.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" Utils """
from PIL import Image
import numpy as np
from mindspore.common import dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.dataset.transforms.vision import Inter
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
""" create dataset for train or test
Args:
data_path: Data path
batch_size: The number of data records in each group
repeat_size: The number of replicated data records
num_parallel_workers: The number of parallel workers
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
#mnist_ds = ds.MnistDataset(data_path,num_samples=32)
# define operation parameters
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # resize images to (32, 32)
rescale_op = CV.Rescale(rescale, shift) # rescale images
hwc2chw_op = CV.HWC2CHW() # change shape from (height, width, channel) to (channel, height, width) to fit network.
type_cast_op = C.TypeCast(mstype.int32) # change data type of label to int32 to fit network
# apply map operations on images
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
def save_img(data, name, size=32, num=32):
"""
Visualize data and save to target files
Args:
data: nparray of size (num, size, size)
name: ouput file name
size: image size
num: number of images
"""
col = int(num / 8)
row = 8
imgs = Image.new('L', (size*col, size*row))
for i in range(num):
j = i/8
img_data = data[i]
img_data = np.resize(img_data, (size, size))
img_data = img_data * 255
img_data = img_data.astype(np.uint8)
im = Image.fromarray(img_data, 'L')
imgs.paste(im, (int(j) * size, (i % 8) * size))
imgs.save(name)