You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
4.9 KiB
132 lines
4.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import os
|
|
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.vision.c_transforms as CV
|
|
import mindspore.nn as nn
|
|
from mindspore import context, Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.nn.probability.dpn import ConditionalVAE
|
|
from mindspore.nn.probability.infer import ELBO, SVI
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU")
|
|
IMAGE_SHAPE = (-1, 1, 32, 32)
|
|
image_path = os.path.join('/home/workspace/mindspore_dataset/mnist', "train")
|
|
|
|
|
|
class Encoder(nn.Cell):
|
|
def __init__(self, num_classes):
|
|
super(Encoder, self).__init__()
|
|
self.fc1 = nn.Dense(1024 + num_classes, 400)
|
|
self.relu = nn.ReLU()
|
|
self.flatten = nn.Flatten()
|
|
self.concat = P.Concat(axis=1)
|
|
self.one_hot = nn.OneHot(depth=num_classes)
|
|
|
|
def construct(self, x, y):
|
|
x = self.flatten(x)
|
|
y = self.one_hot(y)
|
|
input_x = self.concat((x, y))
|
|
input_x = self.fc1(input_x)
|
|
input_x = self.relu(input_x)
|
|
return input_x
|
|
|
|
|
|
class Decoder(nn.Cell):
|
|
def __init__(self):
|
|
super(Decoder, self).__init__()
|
|
self.fc2 = nn.Dense(400, 1024)
|
|
self.sigmoid = nn.Sigmoid()
|
|
self.reshape = P.Reshape()
|
|
|
|
def construct(self, z):
|
|
z = self.fc2(z)
|
|
z = self.reshape(z, IMAGE_SHAPE)
|
|
z = self.sigmoid(z)
|
|
return z
|
|
|
|
|
|
class CVAEWithLossCell(nn.WithLossCell):
|
|
"""
|
|
Rewrite WithLossCell for CVAE
|
|
"""
|
|
def construct(self, data, label):
|
|
out = self._backbone(data, label)
|
|
return self._loss_fn(out, label)
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|
num_parallel_workers=1):
|
|
"""
|
|
create dataset for train or test
|
|
"""
|
|
# define dataset
|
|
mnist_ds = ds.MnistDataset(data_path)
|
|
|
|
resize_height, resize_width = 32, 32
|
|
rescale = 1.0 / 255.0
|
|
shift = 0.0
|
|
|
|
# define map operations
|
|
resize_op = CV.Resize((resize_height, resize_width)) # Bilinear mode
|
|
rescale_op = CV.Rescale(rescale, shift)
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
|
|
# apply map operations on images
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
|
|
|
|
# apply DatasetOps
|
|
mnist_ds = mnist_ds.batch(batch_size)
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
return mnist_ds
|
|
|
|
|
|
def test_svi_cvae():
|
|
# define the encoder and decoder
|
|
encoder = Encoder(num_classes=10)
|
|
decoder = Decoder()
|
|
# define the cvae model
|
|
cvae = ConditionalVAE(encoder, decoder, hidden_size=400, latent_size=20, num_classes=10)
|
|
# define the loss function
|
|
net_loss = ELBO(latent_prior='Normal', output_prior='Normal')
|
|
# define the optimizer
|
|
optimizer = nn.Adam(params=cvae.trainable_params(), learning_rate=0.001)
|
|
# define the training dataset
|
|
ds_train = create_dataset(image_path, 128, 1)
|
|
# define the WithLossCell modified
|
|
net_with_loss = CVAEWithLossCell(cvae, net_loss)
|
|
# define the variational inference
|
|
vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer)
|
|
# run the vi to return the trained network.
|
|
cvae = vi.run(train_dataset=ds_train, epochs=5)
|
|
# get the trained loss
|
|
trained_loss = vi.get_train_loss()
|
|
# test function: generate_sample
|
|
sample_label = Tensor([i for i in range(0, 8)] * 8, dtype=mstype.int32)
|
|
generated_sample = cvae.generate_sample(sample_label, 64, IMAGE_SHAPE)
|
|
# test function: reconstruct_sample
|
|
for sample in ds_train.create_dict_iterator(output_numpy=True, num_epochs=1):
|
|
sample_x = Tensor(sample['image'], dtype=mstype.float32)
|
|
sample_y = Tensor(sample['label'], dtype=mstype.int32)
|
|
reconstructed_sample = cvae.reconstruct_sample(sample_x, sample_y)
|
|
print('The loss of the trained network is ', trained_loss)
|
|
print('The shape of the generated sample is ', generated_sample.shape)
|
|
print('The shape of the reconstructed sample is ', reconstructed_sample.shape)
|