You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/ops/test_ops_hashtable_lookup.cc

76 lines
2.8 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <memory>
#include "common/common_test.h"
#include "ops/hashtable_lookup.h"
#include "ir/dtype/type.h"
#include "ir/value.h"
#include "abstract/dshape.h"
#include "utils/tensor_construct_utils.h"
namespace mindspore {
namespace ops {
class TestHashtableLookup : public UT::Common {
public:
TestHashtableLookup() {}
void SetUp() {}
void TearDown() {}
};
TEST_F(TestHashtableLookup, test_ops_hashtable_lookup1) {
auto hashtable_lookup = std::make_shared<HashtableLookup>();
hashtable_lookup->Init();
auto inputs0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeInt32, std::vector<int64_t>{4, 3});
auto inputs1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
auto inputs2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
MS_EXCEPTION_IF_NULL(inputs0);
MS_EXCEPTION_IF_NULL(inputs1);
MS_EXCEPTION_IF_NULL(inputs2);
auto abstract = hashtable_lookup->Infer({inputs0->ToAbstract(), inputs1->ToAbstract(), inputs2->ToAbstract()});
MS_EXCEPTION_IF_NULL(abstract);
EXPECT_EQ(abstract->isa<abstract::AbstractTuple>(), true);
auto shape_ptr = abstract->BuildShape();
MS_EXCEPTION_IF_NULL(shape_ptr);
EXPECT_EQ(shape_ptr->isa<abstract::TupleShape>(), true);
auto shape = shape_ptr->cast<abstract::TupleShapePtr>();
MS_EXCEPTION_IF_NULL(shape);
auto shape_vec = shape->shape();
EXPECT_EQ(shape_vec.size(), 2);
auto shape1 = shape_vec[0]->cast<abstract::ShapePtr>()->shape();
EXPECT_EQ(shape1.size(), 0);
auto shape2 = shape_vec[1]->cast<abstract::ShapePtr>()->shape();
EXPECT_EQ(shape2.size(), 1);
EXPECT_EQ(shape2[0], 4);
auto type_ptr = abstract->BuildType();
MS_EXCEPTION_IF_NULL(type_ptr);
auto type = type_ptr->cast<TuplePtr>();
MS_EXCEPTION_IF_NULL(type);
auto type_vec = type->elements();
MS_EXCEPTION_IF_NULL(type_vec[0]);
auto data0_type = type_vec[0]->cast<TensorTypePtr>()->element();
MS_EXCEPTION_IF_NULL(data0_type);
EXPECT_EQ(data0_type->type_id(), kNumberTypeFloat32);
MS_EXCEPTION_IF_NULL(type_vec[1]);
auto data1_type = type_vec[1]->cast<TensorTypePtr>()->element();
MS_EXCEPTION_IF_NULL(data1_type);
EXPECT_EQ(data1_type->type_id(), kNumberTypeInt8);
}
} // namespace ops
} // namespace mindspore