You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/metrics/test_confusion_matrix_metri...

95 lines
3.3 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# """test_confusion_matrix_metric"""
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import ConfusionMatrixMetric
def test_confusion_matrix_metric():
"""test_confusion_matrix_metric"""
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tpr", calculation_method=False)
metric.clear()
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[0], [1]]]))
metric.update(x, y)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_update_len():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="ppv", calculation_method=True)
metric.clear()
with pytest.raises(ValueError):
metric.update(x)
def test_confusion_matrix_metric_update_dim():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
y = Tensor(np.array([1, 0]))
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
metric.clear()
with pytest.raises(ValueError):
metric.update(y, x)
def test_confusion_matrix_metric_init_skip_channel():
with pytest.raises(TypeError):
ConfusionMatrixMetric(skip_channel=1)
def test_confusion_matrix_metric_init_compute_sample():
with pytest.raises(TypeError):
ConfusionMatrixMetric(calculation_method=1)
def test_confusion_matrix_metric_init_metric_name_type():
with pytest.raises(TypeError):
metric = ConfusionMatrixMetric(skip_channel=True, metric_name=1, calculation_method=False)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_init_metric_name_str():
with pytest.raises(NotImplementedError):
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="wwwww", calculation_method=False)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_runtime():
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()