You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.4 KiB
100 lines
3.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test nn embedding """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.common import dtype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import Embedding, MultiFieldEmbeddingLookup
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_embedding_1():
|
|
net = Embedding(20000, 768, False)
|
|
input_data = Tensor(np.ones([8, 128]), dtype.int32)
|
|
_executor.compile(net, input_data)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_embedding_2():
|
|
net = Embedding(20000, 768, True)
|
|
input_data = Tensor(np.ones([8, 128]), dtype.int32)
|
|
_executor.compile(net, input_data)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_embedding_3():
|
|
net = Embedding(20000, 768, True, "zeros")
|
|
input_data = Tensor(np.ones([8, 128]), dtype.int32)
|
|
_executor.compile(net, input_data)
|
|
|
|
|
|
def compile_multi_field_embedding(shape_id, shape_value, shape_field,
|
|
type_id, type_value, type_field):
|
|
net = MultiFieldEmbeddingLookup(20000, 768, 3)
|
|
input_data = Tensor(np.ones(shape_id), type_id)
|
|
input_value = Tensor(np.ones(shape_value), type_value)
|
|
input_field = Tensor(np.ones(shape_field), type_field)
|
|
_executor.compile(net, input_data, input_value, input_field)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_right_type():
|
|
compile_multi_field_embedding((8, 200), (8, 200), (8, 200),
|
|
dtype.int64, dtype.float32, dtype.int32)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_false_type_input():
|
|
with pytest.raises(TypeError):
|
|
compile_multi_field_embedding((8, 200), (8, 200), (8, 200),
|
|
dtype.int16, dtype.float32, dtype.int32)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_false_type_value():
|
|
with pytest.raises(TypeError):
|
|
compile_multi_field_embedding((8, 200), (8, 200), (8, 200),
|
|
dtype.int16, dtype.float16, dtype.int32)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_false_type_field_id():
|
|
with pytest.raises(TypeError):
|
|
compile_multi_field_embedding((8, 200), (8, 200), (8, 200),
|
|
dtype.int16, dtype.float32, dtype.int16)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_false_input_shape():
|
|
with pytest.raises(ValueError):
|
|
compile_multi_field_embedding((8,), (8, 200), (8, 200),
|
|
dtype.int16, dtype.float32, dtype.int16)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_check_multifield_embedding_false_value_shape():
|
|
with pytest.raises(ValueError):
|
|
compile_multi_field_embedding((8, 200), (8,), (8, 200),
|
|
dtype.int16, dtype.float32, dtype.int16)
|
|
|
|
@non_graph_engine
|
|
def test_print_embedding():
|
|
net = Embedding(20000, 768, False)
|
|
print(net)
|