You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
6.9 KiB
196 lines
6.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test adam """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter, context
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn.optim import Adam, AdamWeightDecay
|
|
from mindspore.ops import operations as P
|
|
import mindspore.nn.learning_rate_schedule as lr_schedules
|
|
from mindspore.nn.dynamic_lr import polynomial_decay_lr
|
|
|
|
context.set_context(enable_sparse=True)
|
|
|
|
class Net(nn.Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
|
return x
|
|
|
|
|
|
class NetWithoutWeight(nn.Cell):
|
|
def __init__(self):
|
|
super(NetWithoutWeight, self).__init__()
|
|
self.matmul = P.MatMul()
|
|
|
|
def construct(self, x):
|
|
x = self.matmul(x, x)
|
|
return x
|
|
|
|
|
|
class NetWithSparseGatherV2(nn.Cell):
|
|
""" NetWithSparseGatherV2 definition """
|
|
def __init__(self):
|
|
super(NetWithSparseGatherV2, self).__init__()
|
|
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
|
|
self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
|
|
self.axis = 0
|
|
self.gather = P.SparseGatherV2()
|
|
|
|
def construct(self, indices, label):
|
|
return self.gather(self.weight1, indices, self.axis) + self.weight2
|
|
|
|
|
|
def test_adamwithoutparam():
|
|
net = NetWithoutWeight()
|
|
net.set_train()
|
|
with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
|
|
AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
|
|
|
|
|
|
def test_adamw_compile():
|
|
""" test_adamw_compile """
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_adam_compile():
|
|
""" test adam compile """
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Adam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_sparse_adam_compile():
|
|
""" test_sparse_adam_compile """
|
|
indices = Tensor(np.array([0, 1]).astype(np.int32))
|
|
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
|
net = NetWithSparseGatherV2()
|
|
net.set_train()
|
|
|
|
optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
|
|
train_network = TrainOneStepCell(net, optimizer)
|
|
_executor.compile(train_network, indices, label)
|
|
|
|
|
|
def test_adam_group1():
|
|
""" test_adam_group_lr_and_weight_decay """
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
net_with_loss = WithLossCell(net, loss)
|
|
all_params = net.trainable_params()
|
|
|
|
poly_decay_lr = polynomial_decay_lr(0.01, 0.0001, total_step=10, step_per_epoch=1, decay_epoch=3, power=1.0)
|
|
|
|
group_params = [{'params': [all_params[0]], 'lr': poly_decay_lr, 'weight_decay': 0.9},
|
|
{'params': [all_params[1]]}]
|
|
optimizer = nn.Adam(group_params, learning_rate=0.1)
|
|
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_adam_group2():
|
|
""" test_adam_group_lr_and_weight_decay """
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
net_with_loss = WithLossCell(net, loss)
|
|
all_params = net.trainable_params()
|
|
|
|
schedule_lr = lr_schedules.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
|
|
group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
|
|
{'params': [all_params[1]]}]
|
|
optimizer = nn.Adam(group_params, learning_rate=schedule_lr)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_adamweightdecay_group():
|
|
""" test_adam_group_lr_and_weight_decay """
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
net_with_loss = WithLossCell(net, loss)
|
|
all_params = net.trainable_params()
|
|
|
|
schedule_lr = lr_schedules.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
|
|
group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
|
|
{'params': [all_params[1]]}]
|
|
optimizer = nn.AdamWeightDecay(group_params, learning_rate=schedule_lr)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_AdamWeightDecay_beta1():
|
|
net = Net()
|
|
print("**********", net.get_parameters())
|
|
with pytest.raises(ValueError):
|
|
AdamWeightDecay(net.get_parameters(), beta1=1.0, learning_rate=0.1)
|
|
|
|
|
|
def test_AdamWeightDecay_beta2():
|
|
net = Net()
|
|
with pytest.raises(ValueError):
|
|
AdamWeightDecay(net.get_parameters(), beta2=1.0, learning_rate=0.1)
|
|
|
|
|
|
def test_AdamWeightDecay_e():
|
|
net = Net()
|
|
with pytest.raises(ValueError):
|
|
AdamWeightDecay(net.get_parameters(), eps=-0.1, learning_rate=0.1)
|
|
|
|
|
|
def test_adam_mindspore_with_empty_params():
|
|
net = nn.Flatten()
|
|
with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
|
|
AdamWeightDecay(net.get_parameters())
|