You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
82 lines
2.9 KiB
82 lines
2.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
from collections import Counter
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn.optim import LARS, Momentum
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|
lr = []
|
|
milestone = Counter(milestone)
|
|
|
|
for step in range(total_steps):
|
|
base_lr = base_lr * gamma ** milestone[step]
|
|
lr.append(base_lr)
|
|
return Tensor(np.array(lr), dtype)
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
|
|
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
|
|
self.matmul = P.MatMul()
|
|
self.biasAdd = P.BiasAdd()
|
|
|
|
def construct(self, x):
|
|
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
|
return x
|
|
|
|
|
|
def test_lars_multi_step_lr():
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
lr = multisteplr(10, [2, 6])
|
|
SGD = Momentum(net.trainable_params(), lr, 0.9)
|
|
optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, use_clip=True,
|
|
lars_filter=lambda x: 'bn' not in x.name)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|
|
|
|
|
|
def test_lars_float_lr():
|
|
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
|
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
|
net = Net()
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
lr = 0.1
|
|
SGD = Momentum(net.trainable_params(), lr, 0.9)
|
|
optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02,
|
|
lars_filter=lambda x: 'bn' not in x.name)
|
|
|
|
net_with_loss = WithLossCell(net, loss)
|
|
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
|
_executor.compile(train_network, inputs, label)
|