You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/optim/test_lars.py

82 lines
2.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from collections import Counter
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import LARS, Momentum
from mindspore.ops import operations as P
def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
lr = []
milestone = Counter(milestone)
for step in range(total_steps):
base_lr = base_lr * gamma ** milestone[step]
lr.append(base_lr)
return Tensor(np.array(lr), dtype)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
def test_lars_multi_step_lr():
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
lr = multisteplr(10, [2, 6])
SGD = Momentum(net.trainable_params(), lr, 0.9)
optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, use_clip=True,
lars_filter=lambda x: 'bn' not in x.name)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_lars_float_lr():
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
lr = 0.1
SGD = Momentum(net.trainable_params(), lr, 0.9)
optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02,
lars_filter=lambda x: 'bn' not in x.name)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)