You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/cnn_direction_model/train.py

119 lines
4.5 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train CNN direction model."""
import argparse
import os
import random
from src.cnn_direction_model import CNNDirectionModel
from src.config import config1 as config
from src.dataset import create_dataset_train
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore import dataset as de
from mindspore.communication.management import init
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim.adam import Adam
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
args_opt = parser.parse_args()
random.seed(11)
np.random.seed(11)
de.config.set_seed(11)
ms.common.set_seed(11)
if __name__ == '__main__':
target = args_opt.device_target
ckpt_save_dir = config.save_checkpoint_path
# init context
device_id = int(os.getenv('DEVICE_ID', '0'))
rank_id = int(os.getenv('RANK_ID', '0'))
rank_size = int(os.getenv('RANK_SIZE', '1'))
run_distribute = rank_size > 1
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend",
device_id=device_id, save_graphs=False)
print("train args: ", args_opt, "\ncfg: ", config,
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
if run_distribute:
context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL)
init()
args_opt.rank_save_ckpt_flag = 0
if args_opt.is_save_on_master:
if rank_id == 0:
args_opt.rank_save_ckpt_flag = 1
else:
args_opt.rank_save_ckpt_flag = 1
# create dataset
dataset_name = config.dataset_name
dataset = create_dataset_train(args_opt.dataset_path + "/" + dataset_name +
".mindrecord0", config=config, dataset_name=dataset_name)
step_size = dataset.get_dataset_size()
# define net
net = CNNDirectionModel([3, 64, 48, 48, 64], [64, 48, 48, 64, 64], [256, 64], [64, 512])
# init weight
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
load_param_into_net(net, param_dict)
lr = config.lr
lr = Tensor(lr, ms.float32)
# define opt
opt = Adam(params=net.trainable_params(), learning_rate=lr, eps=1e-07)
# define loss, model
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="sum")
model = Model(net, loss_fn=loss, optimizer=opt, metrics={"Accuracy": Accuracy()})
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossMonitor()
cb = [time_cb, loss_cb]
if config.save_checkpoint:
if args_opt.rank_save_ckpt_flag == 1:
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix="cnn_direction_model", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
# train model
model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False)