You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_random_rotation.py

225 lines
9.3 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomRotation op in DE
"""
import numpy as np
import cv2
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.c_transforms as c_vision
import mindspore.dataset.vision.py_transforms as py_vision
from mindspore.dataset.vision.utils import Inter
from mindspore import log as logger
from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_random_rotation_op_c(plot=False):
"""
Test RandomRotation in c++ transformations op
"""
logger.info("test_random_rotation_op_c")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
decode_op = c_vision.Decode()
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
random_rotation_op = c_vision.RandomRotation((90, 90), expand=True)
data1 = data1.map(operations=decode_op, input_columns=["image"])
data1 = data1.map(operations=random_rotation_op, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(operations=decode_op, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
rotation_de = item1["image"]
original = item2["image"]
logger.info("shape before rotate: {}".format(original.shape))
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
mse = diff_mse(rotation_de, rotation_cv)
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
assert mse == 0
num_iter += 1
if plot:
visualize_image(original, rotation_de, mse, rotation_cv)
def test_random_rotation_op_py(plot=False):
"""
Test RandomRotation in python transformations op
"""
logger.info("test_random_rotation_op_py")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
transform1 = mindspore.dataset.transforms.py_transforms.Compose([py_vision.Decode(),
py_vision.RandomRotation((90, 90), expand=True),
py_vision.ToTensor()])
data1 = data1.map(operations=transform1, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transform2 = mindspore.dataset.transforms.py_transforms.Compose([py_vision.Decode(),
py_vision.ToTensor()])
data2 = data2.map(operations=transform2, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
rotation_de = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
logger.info("shape before rotate: {}".format(original.shape))
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
mse = diff_mse(rotation_de, rotation_cv)
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
assert mse == 0
num_iter += 1
if plot:
visualize_image(original, rotation_de, mse, rotation_cv)
def test_random_rotation_expand():
"""
Test RandomRotation op
"""
logger.info("test_random_rotation_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
# expand is set to be True to match output size
random_rotation_op = c_vision.RandomRotation((0, 90), expand=True)
data1 = data1.map(operations=decode_op, input_columns=["image"])
data1 = data1.map(operations=random_rotation_op, input_columns=["image"])
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1):
rotation = item["image"]
logger.info("shape after rotate: {}".format(rotation.shape))
num_iter += 1
def test_random_rotation_md5():
"""
Test RandomRotation with md5 check
"""
logger.info("Test RandomRotation with md5 check")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Fisrt dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
resize_op = c_vision.RandomRotation((0, 90),
expand=True,
resample=Inter.BILINEAR,
center=(50, 50),
fill_value=150)
data1 = data1.map(operations=decode_op, input_columns=["image"])
data1 = data1.map(operations=resize_op, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
transform2 = mindspore.dataset.transforms.py_transforms.Compose([py_vision.Decode(),
py_vision.RandomRotation((0, 90),
expand=True,
resample=Inter.BILINEAR,
center=(50, 50),
fill_value=150),
py_vision.ToTensor()])
data2 = data2.map(operations=transform2, input_columns=["image"])
# Compare with expected md5 from images
filename1 = "random_rotation_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "random_rotation_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_rotation_diff(plot=False):
"""
Test RandomRotation op
"""
logger.info("test_random_rotation_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
rotation_op = c_vision.RandomRotation((45, 45))
ctrans = [decode_op,
rotation_op
]
data1 = data1.map(operations=ctrans, input_columns=["image"])
# Second dataset
transforms = [
py_vision.Decode(),
py_vision.RandomRotation((45, 45)),
py_vision.ToTensor(),
]
transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(operations=transform, input_columns=["image"])
num_iter = 0
image_list_c, image_list_py = [], []
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
num_iter += 1
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_list_c.append(c_image)
image_list_py.append(py_image)
logger.info("shape of c_image: {}".format(c_image.shape))
logger.info("shape of py_image: {}".format(py_image.shape))
logger.info("dtype of c_image: {}".format(c_image.dtype))
logger.info("dtype of py_image: {}".format(py_image.dtype))
mse = diff_mse(c_image, py_image)
assert mse < 0.001 # Rounding error
if plot:
visualize_list(image_list_c, image_list_py, visualize_mode=2)
if __name__ == "__main__":
test_random_rotation_op_c(plot=True)
test_random_rotation_op_py(plot=True)
test_random_rotation_expand()
test_random_rotation_md5()
test_rotation_diff(plot=True)