You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
12 KiB
318 lines
12 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Exponential Distribution"""
|
|
import numpy as np
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import composite as C
|
|
from mindspore.common import dtype as mstype
|
|
from .distribution import Distribution
|
|
from ._utils.utils import cast_to_tensor, check_greater_zero, check_type, check_distribution_name, set_param_type
|
|
from ._utils.custom_ops import exp_generic, log_generic
|
|
|
|
|
|
class Exponential(Distribution):
|
|
"""
|
|
Example class: Exponential Distribution.
|
|
|
|
Args:
|
|
rate (float, list, numpy.ndarray, Tensor, Parameter): The inverse scale.
|
|
seed (int): The seed used in sampling. The global seed is used if it is None. Default: None.
|
|
dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
|
|
name (str): The name of the distribution. Default: 'Exponential'.
|
|
|
|
Note:
|
|
`rate` should be strictly greater than 0.
|
|
`dist_spec_args` is `rate`.
|
|
`dtype` should be a float type because Exponential distributions are continuous.
|
|
|
|
Examples:
|
|
>>> # To initialize an Exponential distribution of the rate 0.5.
|
|
>>> import mindspore.nn.probability.distribution as msd
|
|
>>> e = msd.Exponential(0.5, dtype=mstype.float32)
|
|
>>>
|
|
>>> # The following creates two independent Exponential distributions.
|
|
>>> e = msd.Exponential([0.5, 0.5], dtype=mstype.float32)
|
|
>>>
|
|
>>> # An Exponential distribution can be initilized without arguments.
|
|
>>> # In this case, `rate` must be passed in through `args` during function calls.
|
|
>>> e = msd.Exponential(dtype=mstype.float32)
|
|
>>>
|
|
>>> # To use an Exponential distribution in a network.
|
|
>>> class net(Cell):
|
|
>>> def __init__(self):
|
|
>>> super(net, self).__init__():
|
|
>>> self.e1 = msd.Exponential(0.5, dtype=mstype.float32)
|
|
>>> self.e2 = msd.Exponential(dtype=mstype.float32)
|
|
>>>
|
|
>>> # All the following calls in construct are valid.
|
|
>>> def construct(self, value, rate_b, rate_a):
|
|
>>>
|
|
>>> # Private interfaces of probability functions corresponding to public interfaces, including
|
|
>>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, are the same as follows.
|
|
>>> # Args:
|
|
>>> # value (Tensor): the value to be evaluated.
|
|
>>> # rate (Tensor): the rate of the distribution. Default: self.rate.
|
|
>>>
|
|
>>> # Examples of `prob`.
|
|
>>> # Similar calls can be made to other probability functions
|
|
>>> # by replacing `prob` by the name of the function.
|
|
>>> ans = self.e1.prob(value)
|
|
>>> # Evaluate with respect to distribution b.
|
|
>>> ans = self.e1.prob(value, rate_b)
|
|
>>> # `rate` must be passed in during function calls.
|
|
>>> ans = self.e2.prob(value, rate_a)
|
|
>>>
|
|
>>>
|
|
>>> # Functions `mean`, `sd`, 'var', and 'entropy' have the same arguments as follows.
|
|
>>> # Args:
|
|
>>> # rate (Tensor): the rate of the distribution. Default: self.rate.
|
|
>>>
|
|
>>> # Examples of `mean`. `sd`, `var`, and `entropy` are similar.
|
|
>>> ans = self.e1.mean() # return 2
|
|
>>> ans = self.e1.mean(rate_b) # return 1 / rate_b
|
|
>>> # `rate` must be passed in during function calls.
|
|
>>> ans = self.e2.mean(rate_a)
|
|
>>>
|
|
>>>
|
|
>>> # Interfaces of `kl_loss` and `cross_entropy` are the same.
|
|
>>> # Args:
|
|
>>> # dist (str): The name of the distribution. Only 'Exponential' is supported.
|
|
>>> # rate_b (Tensor): the rate of distribution b.
|
|
>>> # rate_a (Tensor): the rate of distribution a. Default: self.rate.
|
|
>>>
|
|
>>> # Examples of `kl_loss`. `cross_entropy` is similar.
|
|
>>> ans = self.e1.kl_loss('Exponential', rate_b)
|
|
>>> ans = self.e1.kl_loss('Exponential', rate_b, rate_a)
|
|
>>> # An additional `rate` must be passed in.
|
|
>>> ans = self.e2.kl_loss('Exponential', rate_b, rate_a)
|
|
>>>
|
|
>>>
|
|
>>> # Examples of `sample`.
|
|
>>> # Args:
|
|
>>> # shape (tuple): the shape of the sample. Default: ()
|
|
>>> # probs1 (Tensor): the rate of the distribution. Default: self.rate.
|
|
>>> ans = self.e1.sample()
|
|
>>> ans = self.e1.sample((2,3))
|
|
>>> ans = self.e1.sample((2,3), rate_b)
|
|
>>> ans = self.e2.sample((2,3), rate_a)
|
|
"""
|
|
|
|
def __init__(self,
|
|
rate=None,
|
|
seed=None,
|
|
dtype=mstype.float32,
|
|
name="Exponential"):
|
|
"""
|
|
Constructor of Exponential.
|
|
"""
|
|
param = dict(locals())
|
|
valid_dtype = mstype.float_type
|
|
check_type(dtype, valid_dtype, type(self).__name__)
|
|
super(Exponential, self).__init__(seed, dtype, name, param)
|
|
self.parameter_type = set_param_type({'rate': rate}, self.dtype)
|
|
if rate is not None:
|
|
self._rate = cast_to_tensor(rate, self.parameter_type)
|
|
check_greater_zero(self._rate, "rate")
|
|
else:
|
|
self._rate = rate
|
|
|
|
self.default_parameters = [self.rate]
|
|
self.parameter_names = ['rate']
|
|
|
|
self.minval = np.finfo(np.float).tiny
|
|
|
|
# ops needed for the class
|
|
self.exp = exp_generic
|
|
self.log = log_generic
|
|
self.squeeze = P.Squeeze(0)
|
|
self.cast = P.Cast()
|
|
self.const = P.ScalarToArray()
|
|
self.dtypeop = P.DType()
|
|
self.fill = P.Fill()
|
|
self.less = P.Less()
|
|
self.select = P.Select()
|
|
self.shape = P.Shape()
|
|
self.sqrt = P.Sqrt()
|
|
self.sq = P.Square()
|
|
self.uniform = C.uniform
|
|
|
|
def extend_repr(self):
|
|
if self.is_scalar_batch:
|
|
str_info = f'rate = {self.rate}'
|
|
else:
|
|
str_info = f'batch_shape = {self._broadcast_shape}'
|
|
return str_info
|
|
|
|
@property
|
|
def rate(self):
|
|
"""
|
|
Return `rate` of the distribution.
|
|
"""
|
|
return self._rate
|
|
|
|
def _mean(self, rate=None):
|
|
r"""
|
|
.. math::
|
|
MEAN(EXP) = \frac{1.0}{\lambda}.
|
|
"""
|
|
rate = self._check_param_type(rate)
|
|
return 1.0 / rate
|
|
|
|
def _mode(self, rate=None):
|
|
r"""
|
|
.. math::
|
|
MODE(EXP) = 0.
|
|
"""
|
|
rate = self._check_param_type(rate)
|
|
return self.fill(self.dtype, self.shape(rate), 0.)
|
|
|
|
def _sd(self, rate=None):
|
|
r"""
|
|
.. math::
|
|
sd(EXP) = \frac{1.0}{\lambda}.
|
|
"""
|
|
rate = self._check_param_type(rate)
|
|
return 1.0 / rate
|
|
|
|
def _entropy(self, rate=None):
|
|
r"""
|
|
.. math::
|
|
H(Exp) = 1 - \log(\lambda).
|
|
"""
|
|
rate = self._check_param_type(rate)
|
|
return 1.0 - self.log(rate)
|
|
|
|
def _cross_entropy(self, dist, rate_b, rate=None):
|
|
"""
|
|
Evaluate cross entropy between Exponential distributions.
|
|
|
|
Args:
|
|
dist (str): The type of the distributions. Should be "Exponential" in this case.
|
|
rate_b (Tensor): The rate of distribution b.
|
|
rate_a (Tensor): The rate of distribution a. Default: self.rate.
|
|
"""
|
|
check_distribution_name(dist, 'Exponential')
|
|
return self._entropy(rate) + self._kl_loss(dist, rate_b, rate)
|
|
|
|
def _log_prob(self, value, rate=None):
|
|
r"""
|
|
Log probability density function of Exponential distributions.
|
|
|
|
Args:
|
|
Args:
|
|
value (Tensor): The value to be evaluated.
|
|
rate (Tensor): The rate of the distribution. Default: self.rate.
|
|
|
|
Note:
|
|
`value` should be greater or equal to zero.
|
|
|
|
.. math::
|
|
log_pdf(x) = \log(rate) - rate * x if x >= 0 else 0
|
|
"""
|
|
value = self._check_value(value, "value")
|
|
value = self.cast(value, self.dtype)
|
|
rate = self._check_param_type(rate)
|
|
prob = self.log(rate) - rate * value
|
|
zeros = self.fill(self.dtypeop(prob), self.shape(prob), 0.0)
|
|
neginf = self.fill(self.dtypeop(prob), self.shape(prob), -np.inf)
|
|
comp = self.less(value, zeros)
|
|
return self.select(comp, neginf, prob)
|
|
|
|
def _cdf(self, value, rate=None):
|
|
r"""
|
|
Cumulative distribution function (cdf) of Exponential distributions.
|
|
|
|
Args:
|
|
value (Tensor): The value to be evaluated.
|
|
rate (Tensor): The rate of the distribution. Default: self.rate.
|
|
|
|
Note:
|
|
`value` should be greater or equal to zero.
|
|
|
|
.. math::
|
|
cdf(x) = 1.0 - \exp(-1 * \lambda * x) if x >= 0 else 0
|
|
"""
|
|
value = self._check_value(value, 'value')
|
|
value = self.cast(value, self.dtype)
|
|
rate = self._check_param_type(rate)
|
|
cdf = 1.0 - self.exp(-1. * rate * value)
|
|
zeros = self.fill(self.dtypeop(cdf), self.shape(cdf), 0.0)
|
|
comp = self.less(value, zeros)
|
|
return self.select(comp, zeros, cdf)
|
|
|
|
def _log_survival(self, value, rate=None):
|
|
r"""
|
|
Log survival_function of Exponential distributions.
|
|
|
|
Args:
|
|
value (Tensor): The value to be evaluated.
|
|
rate (Tensor): The rate of the distribution. Default: self.rate.
|
|
|
|
Note:
|
|
`value` should be greater or equal to zero.
|
|
|
|
.. math::
|
|
log_survival_function(x) = -1 * \lambda * x if x >= 0 else 0
|
|
"""
|
|
value = self._check_value(value, 'value')
|
|
value = self.cast(value, self.dtype)
|
|
rate = self._check_param_type(rate)
|
|
sf = -1. * rate * value
|
|
zeros = self.fill(self.dtypeop(sf), self.shape(sf), 0.0)
|
|
comp = self.less(value, zeros)
|
|
return self.select(comp, zeros, sf)
|
|
|
|
def _kl_loss(self, dist, rate_b, rate=None):
|
|
"""
|
|
Evaluate exp-exp kl divergence, i.e. KL(a||b).
|
|
|
|
Args:
|
|
dist (str): The type of the distributions. Should be "Exponential" in this case.
|
|
rate_b (Tensor): The rate of distribution b.
|
|
rate_a (Tensor): The rate of distribution a. Default: self.rate.
|
|
"""
|
|
check_distribution_name(dist, 'Exponential')
|
|
rate_b = self._check_value(rate_b, 'rate_b')
|
|
rate_b = self.cast(rate_b, self.parameter_type)
|
|
rate_a = self._check_param_type(rate)
|
|
return self.log(rate_a) - self.log(rate_b) + rate_b / rate_a - 1.0
|
|
|
|
def _sample(self, shape=(), rate=None):
|
|
"""
|
|
Sampling.
|
|
|
|
Args:
|
|
shape (tuple): The shape of the sample. Default: ().
|
|
rate (Tensor): The rate of the distribution. Default: self.rate.
|
|
|
|
Returns:
|
|
Tensor, shape is shape + batch_shape.
|
|
"""
|
|
shape = self.checktuple(shape, 'shape')
|
|
rate = self._check_param_type(rate)
|
|
origin_shape = shape + self.shape(rate)
|
|
if origin_shape == ():
|
|
sample_shape = (1,)
|
|
else:
|
|
sample_shape = origin_shape
|
|
minval = self.const(self.minval)
|
|
maxval = self.const(1.0)
|
|
sample_uniform = self.uniform(sample_shape, minval, maxval, self.seed)
|
|
sample = self.log(sample_uniform) / rate
|
|
value = self.cast(-sample, self.dtype)
|
|
if origin_shape == ():
|
|
value = self.squeeze(value)
|
|
return value
|