You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/custom_ops_tbe/square_impl.py

97 lines
2.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from __future__ import absolute_import
import te.lang.cce
from te import tvm
from te.platform.fusion_manager import fusion_manager
from topi import generic
from topi.cce import util
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
@fusion_manager.register("square")
def square_compute(input_x, output_y):
"""
algorithm: square
calculating data's square,y= x*x
Parameters
----------
input_x: TVM tensor
the placeholder of input data
output_y: dict
shape and dtype of output, should be same shape and type as input
kernel_name: str
cce kernel name, default value is square
Returns
-------
res : tvm.tensor
the result of square
"""
res = te.lang.cce.vmul(input_x, input_x)
return res
cus_square_op_info = TBERegOp("CusSquare") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("square.so") \
.compute_cost(10) \
.kernel_name("CusSquareImpl") \
.partial_flag(True) \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.get_op_info()
@op_info_register(cus_square_op_info)
def CusSquareImpl(input_x, output_y, kernel_name="CusSquareImpl"):
"""
algorithm: square
calculating data's square,y= x*x
Parameters
----------
input_x : dict
shape and dtype of input, only support float32
output_y: dict
shape and dtype of output, should be same shape and type as input
kernel_name : str
kernel name, default value is "square"
Returns
-------
None
"""
shape = input_x.get("shape")
dtype = input_x.get("dtype").lower()
shape = util.shape_refine(shape)
data = tvm.placeholder(shape, name="data", dtype=dtype.lower())
with tvm.target.cce():
res = square_compute(data, output_y)
sch = generic.auto_schedule(res)
config = {"print_ir": False,
"name": kernel_name,
"tensor_list": [data, res]}
te.lang.cce.cce_build_code(sch, config)