You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
2.8 KiB
97 lines
2.8 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
from __future__ import absolute_import
|
|
|
|
import te.lang.cce
|
|
from te import tvm
|
|
from te.platform.fusion_manager import fusion_manager
|
|
from topi import generic
|
|
from topi.cce import util
|
|
|
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
|
|
|
@fusion_manager.register("square")
|
|
def square_compute(input_x, output_y):
|
|
"""
|
|
algorithm: square
|
|
calculating data's square,y= x*x
|
|
|
|
Parameters
|
|
----------
|
|
input_x: TVM tensor
|
|
the placeholder of input data
|
|
output_y: dict
|
|
shape and dtype of output, should be same shape and type as input
|
|
kernel_name: str
|
|
cce kernel name, default value is square
|
|
|
|
Returns
|
|
-------
|
|
res : tvm.tensor
|
|
the result of square
|
|
"""
|
|
res = te.lang.cce.vmul(input_x, input_x)
|
|
return res
|
|
|
|
|
|
cus_square_op_info = TBERegOp("CusSquare") \
|
|
.fusion_type("OPAQUE") \
|
|
.async_flag(False) \
|
|
.binfile_name("square.so") \
|
|
.compute_cost(10) \
|
|
.kernel_name("CusSquareImpl") \
|
|
.partial_flag(True) \
|
|
.input(0, "x", False, "required", "all") \
|
|
.output(0, "y", False, "required", "all") \
|
|
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
|
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
|
.get_op_info()
|
|
|
|
|
|
@op_info_register(cus_square_op_info)
|
|
def CusSquareImpl(input_x, output_y, kernel_name="CusSquareImpl"):
|
|
"""
|
|
algorithm: square
|
|
calculating data's square,y= x*x
|
|
|
|
Parameters
|
|
----------
|
|
input_x : dict
|
|
shape and dtype of input, only support float32
|
|
output_y: dict
|
|
shape and dtype of output, should be same shape and type as input
|
|
kernel_name : str
|
|
kernel name, default value is "square"
|
|
|
|
Returns
|
|
-------
|
|
None
|
|
"""
|
|
shape = input_x.get("shape")
|
|
dtype = input_x.get("dtype").lower()
|
|
|
|
shape = util.shape_refine(shape)
|
|
data = tvm.placeholder(shape, name="data", dtype=dtype.lower())
|
|
|
|
with tvm.target.cce():
|
|
res = square_compute(data, output_y)
|
|
sch = generic.auto_schedule(res)
|
|
|
|
config = {"print_ir": False,
|
|
"name": kernel_name,
|
|
"tensor_list": [data, res]}
|
|
|
|
te.lang.cce.cce_build_code(sch, config)
|