You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_broadcast_to.py

115 lines
4.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.context as context
from mindspore import Tensor, Parameter
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True):
super(Net, self).__init__()
self.shape = (8, 48, 64)
self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
self.mul = P.Mul().shard(strategy2)
if is_parameter:
self.weight1 = Parameter(weight1, "w1")
else:
self.weight1 = weight1
def construct(self, x):
out = self.broadcast(self.weight1)
out = self.mul(x, out)
return out
class MatMulNet(nn.Cell):
def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True):
super(MatMulNet, self).__init__()
self.shape = (8, 64, 64)
self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
self.matmul = P.BatchMatMul().shard(strategy2)
self.mul = P.Mul().shard(strategy3)
if is_parameter:
self.weight1 = Parameter(weight1, "w1")
else:
self.weight1 = weight1
def construct(self, x1, x2):
out = self.broadcast(x2)
out = self.matmul(x1, out)
out = self.mul(out, self.weight1)
return out
_w1 = Tensor(np.ones([1, 48, 64]), dtype=ms.float32)
_x1 = Tensor(np.ones([8, 48, 64]), dtype=ms.float32)
_x2 = Tensor(np.ones([64, 64]), dtype=ms.float32)
def compile_net(net):
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x1)
context.reset_auto_parallel_context()
def compile_net2(net):
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, _x1, _x2)
context.reset_auto_parallel_context()
def test_BroadcastTo_parameter():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_BroadcastTo_parameter_no_full():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_BroadcastTo_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_BroadcastTo_matmul():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 4),)
strategy2 = ((1, 1, 2), (1, 2, 4))
strategy3 = ((1, 2, 4), (1, 2, 4))
net = MatMulNet(_w1, strategy1, strategy2, strategy3)
compile_net2(net)