You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_pipeline_split.py

168 lines
5.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import context
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.train.model import Model
class DatasetLenet():
def __init__(self, data, label, length=3):
self.data = data
self.label = label
self.index = 1
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.data, self.label
def reset(self):
self.index = 0
def get_dataset_size(self):
return 32
def get_repeat_count(self):
return 1
def get_batch_size(self):
return 32
def create_tuple_iterator(self, num_epochs=1):
return self
class MatMulCell(nn.Cell):
def __init__(self, strategy1, strategy2, param=None):
super().__init__()
self.param = Parameter(initializer("zeros", [64, 64]), name="param")
if param is not None:
self.param = param
self.param1 = Parameter(initializer("zeros", [64, 64]), name="param1")
self.matmul = P.MatMul().shard(strategy1)
self.matmul1 = P.MatMul().shard(strategy2)
def construct(self, x):
out = self.matmul(x, self.param)
out = self.matmul1(out, self.param1)
return out
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, param=None):
super().__init__()
self.block = nn.CellList()
for i in range(2):
cell = MatMulCell(strategy1, strategy2, param)
cell.stage = i
self.block.append(cell)
def construct(self, x):
for i in range(2):
x = self.block[i](x)
return x
class PipelineSplit(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.cell = Net(strategy1, strategy2)
def construct(self, x, label):
x = self.cell(x)
return x
class PipelineSplit2(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.param = Parameter(initializer("zeros", [64, 64]), name="param")
self.cell = Net(strategy1, strategy2, self.param)
def construct(self, x, label):
x = self.cell(x)
return x
def test_pipeline_split_stage0():
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
net = PipelineSplit(strategy1, strategy2)
params = net.cell.block[0].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_pipeline_split_stage1():
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
net = PipelineSplit(strategy1, strategy2)
params = net.cell.block[1].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_pipeline_split_shared_parameter_stage0():
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
net = PipelineSplit2(strategy1, strategy2)
params = net.cell.block[0].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_pipeline_split_shared_parameter_stage1():
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
net = PipelineSplit2(strategy1, strategy2)
params = net.cell.block[1].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)