You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							109 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							109 lines
						
					
					
						
							4.2 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| import mindspore as ms
 | |
| from mindspore import context, Tensor, Parameter
 | |
| from mindspore.common.api import _executor
 | |
| from mindspore.common.initializer import initializer
 | |
| from mindspore.nn import Cell, TrainOneStepCell, Momentum
 | |
| from mindspore.ops import operations as P
 | |
| 
 | |
| 
 | |
| class Net(Cell):
 | |
|     def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
 | |
|         super().__init__()
 | |
|         self.begin_norm_axis = 2
 | |
|         self.begin_params_axis = 1
 | |
|         self.mul = P.Mul().set_strategy(strategy1)
 | |
|         self.layer_norm = P.LayerNorm(self.begin_norm_axis, self.begin_params_axis).set_strategy(strategy2)
 | |
|         self.mul2 = P.Mul().set_strategy(strategy3)
 | |
|         self.mul_weight = Parameter(mul_weight, "w1")
 | |
|         self.normalized_shape = [64, 32, 16]
 | |
|         self.gamma = Parameter(initializer('ones', self.normalized_shape), name="gamma")
 | |
|         self.beta = Parameter(initializer('zeros', self.normalized_shape), name="beta")
 | |
| 
 | |
|     def construct(self, x, b):
 | |
|         out = self.mul(x, self.mul_weight)
 | |
|         out, _, _ = self.layer_norm(out, self.gamma, self.beta)
 | |
|         out = self.mul2(out, b)
 | |
|         return out
 | |
| 
 | |
| 
 | |
| _x = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
 | |
| _w = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
 | |
| _b = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
 | |
| 
 | |
| 
 | |
| def compile_net(net):
 | |
|     optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
 | |
|     train_net = TrainOneStepCell(net, optimizer)
 | |
|     train_net.set_auto_parallel()
 | |
|     _executor.compile(train_net, _x, _b)
 | |
|     context.reset_auto_parallel_context()
 | |
| 
 | |
| 
 | |
| def test_layer_norm_data_parallel():
 | |
|     context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
 | |
|     strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1))
 | |
|     strategy2 = ((16, 1, 1, 1), (1, 1, 1), (1, 1, 1))
 | |
|     strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
 | |
|     net = Net(_w, strategy1, strategy2, strategy3)
 | |
|     compile_net(net)
 | |
| 
 | |
| 
 | |
| def test_layer_norm_model_parallel():
 | |
|     context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
 | |
|     strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1))
 | |
|     strategy2 = ((1, 16, 1, 1), (16, 1, 1), (16, 1, 1))
 | |
|     strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1))
 | |
|     net = Net(_w, strategy1, strategy2, strategy3)
 | |
|     compile_net(net)
 | |
| 
 | |
| 
 | |
| def test_layer_norm_hybrid_parallel():
 | |
|     context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
 | |
|     strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1))
 | |
|     strategy2 = ((2, 8, 1, 1), (8, 1, 1), (8, 1, 1))
 | |
|     strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1))
 | |
|     net = Net(_w, strategy1, strategy2, strategy3)
 | |
|     compile_net(net)
 | |
| 
 | |
| 
 | |
| def test_layer_norm_auto_parallel():
 | |
|     context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
 | |
|     net = Net(_w)
 | |
|     compile_net(net)
 | |
| 
 | |
| 
 | |
| def test_layer_norm_repeat_calc():
 | |
|     context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
 | |
|     strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
 | |
|     strategy2 = ((2, 2, 1, 1), (2, 1, 1), (2, 1, 1))
 | |
|     strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
 | |
|     net = Net(_w, strategy1, strategy2, strategy3)
 | |
|     compile_net(net)
 | |
| 
 | |
| 
 | |
| def test_layer_norm_wrong_strategy():
 | |
|     context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
 | |
|     strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
 | |
|     strategy2 = ((1, 2, 1, 2), (2, 1, 2), (2, 1, 2))
 | |
|     strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
 | |
|     net = Net(_w, strategy1, strategy2, strategy3)
 | |
|     with pytest.raises(RuntimeError):
 | |
|         compile_net(net)
 |