You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/deeplabv3/train.py

187 lines
9.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train deeplabv3."""
import os
import argparse
import ast
from mindspore import context
from mindspore.train.model import Model
from mindspore.context import ParallelMode
import mindspore.nn as nn
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.callback import LossMonitor, TimeMonitor
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.common import set_seed
from src.data import dataset as data_generator
from src.loss import loss
from src.nets import net_factory
from src.utils import learning_rates
set_seed(1)
class BuildTrainNetwork(nn.Cell):
def __init__(self, network, criterion):
super(BuildTrainNetwork, self).__init__()
self.network = network
self.criterion = criterion
def construct(self, input_data, label):
output = self.network(input_data)
net_loss = self.criterion(output, label)
return net_loss
def parse_args():
parser = argparse.ArgumentParser('mindspore deeplabv3 training')
parser.add_argument('--train_dir', type=str, default='', help='where training log and ckpts saved')
# dataset
parser.add_argument('--data_file', type=str, default='', help='path and name of one mindrecord file')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--crop_size', type=int, default=513, help='crop size')
parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
parser.add_argument('--min_scale', type=float, default=0.5, help='minimum scale of data argumentation')
parser.add_argument('--max_scale', type=float, default=2.0, help='maximum scale of data argumentation')
parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
# optimizer
parser.add_argument('--train_epochs', type=int, default=300, help='epoch')
parser.add_argument('--lr_type', type=str, default='cos', help='type of learning rate')
parser.add_argument('--base_lr', type=float, default=0.015, help='base learning rate')
parser.add_argument('--lr_decay_step', type=int, default=40000, help='learning rate decay step')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='learning rate decay rate')
parser.add_argument('--loss_scale', type=float, default=3072.0, help='loss scale')
# model
parser.add_argument('--model', type=str, default='deeplab_v3_s16', help='select model')
parser.add_argument('--freeze_bn', action='store_true', help='freeze bn')
parser.add_argument('--ckpt_pre_trained', type=str, default='', help='pretrained model')
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
help="Filter the last weight parameters, default is False.")
# train
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument('--is_distributed', action='store_true', help='distributed training')
parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
parser.add_argument('--save_steps', type=int, default=3000, help='steps interval for saving')
parser.add_argument('--keep_checkpoint_max', type=int, default=int, help='max checkpoint for saving')
args, _ = parser.parse_known_args()
return args
def train():
args = parse_args()
if args.device_target == "CPU":
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="CPU")
else:
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, save_graphs=False,
device_target="Ascend", device_id=int(os.getenv('DEVICE_ID')))
# init multicards training
if args.is_distributed:
init()
args.rank = get_rank()
args.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=args.group_size)
# dataset
dataset = data_generator.SegDataset(image_mean=args.image_mean,
image_std=args.image_std,
data_file=args.data_file,
batch_size=args.batch_size,
crop_size=args.crop_size,
max_scale=args.max_scale,
min_scale=args.min_scale,
ignore_label=args.ignore_label,
num_classes=args.num_classes,
num_readers=2,
num_parallel_calls=4,
shard_id=args.rank,
shard_num=args.group_size)
dataset = dataset.get_dataset(repeat=1)
# network
if args.model == 'deeplab_v3_s16':
network = net_factory.nets_map[args.model]('train', args.num_classes, 16, args.freeze_bn)
elif args.model == 'deeplab_v3_s8':
network = net_factory.nets_map[args.model]('train', args.num_classes, 8, args.freeze_bn)
else:
raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
# loss
loss_ = loss.SoftmaxCrossEntropyLoss(args.num_classes, args.ignore_label)
loss_.add_flags_recursive(fp32=True)
train_net = BuildTrainNetwork(network, loss_)
# load pretrained model
if args.ckpt_pre_trained:
param_dict = load_checkpoint(args.ckpt_pre_trained)
if args.filter_weight:
for key in list(param_dict.keys()):
if key in ["network.aspp.conv2.weight", "network.aspp.conv2.bias"]:
print('filter {}'.format(key))
del param_dict[key]
load_param_into_net(train_net, param_dict)
print('load_model {} success'.format(args.ckpt_pre_trained))
# optimizer
iters_per_epoch = dataset.get_dataset_size()
total_train_steps = iters_per_epoch * args.train_epochs
if args.lr_type == 'cos':
lr_iter = learning_rates.cosine_lr(args.base_lr, total_train_steps, total_train_steps)
elif args.lr_type == 'poly':
lr_iter = learning_rates.poly_lr(args.base_lr, total_train_steps, total_train_steps, end_lr=0.0, power=0.9)
elif args.lr_type == 'exp':
lr_iter = learning_rates.exponential_lr(args.base_lr, args.lr_decay_step, args.lr_decay_rate,
total_train_steps, staircase=True)
else:
raise ValueError('unknown learning rate type')
opt = nn.Momentum(params=train_net.trainable_params(), learning_rate=lr_iter, momentum=0.9, weight_decay=0.0001,
loss_scale=args.loss_scale)
# loss scale
manager_loss_scale = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
amp_level = "O0" if args.device_target == "CPU" else "O3"
model = Model(train_net, optimizer=opt, amp_level=amp_level, loss_scale_manager=manager_loss_scale)
# callback for saving ckpts
time_cb = TimeMonitor(data_size=iters_per_epoch)
loss_cb = LossMonitor()
cbs = [time_cb, loss_cb]
if args.rank == 0:
config_ck = CheckpointConfig(save_checkpoint_steps=args.save_steps,
keep_checkpoint_max=args.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix=args.model, directory=args.train_dir, config=config_ck)
cbs.append(ckpoint_cb)
model.train(args.train_epochs, dataset, callbacks=cbs, dataset_sink_mode=(args.device_target != "CPU"))
if __name__ == '__main__':
train()