You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/auto_monad/test_effect_random.py

433 lines
14 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.ops.operations as P
import mindspore.nn.probability.distribution as msd
from mindspore import context, Tensor
from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Sampling(nn.Cell):
"""
Test class: sample of Normal distribution.
"""
def __init__(self, shape, seed=0):
super(Sampling, self).__init__()
self.n1 = msd.Normal(0, 1, seed=seed, dtype=dtype.float32)
self.shape = shape
def construct(self, mean=None, sd=None):
s1 = self.n1.sample(self.shape, mean, sd)
s2 = self.n1.sample(self.shape, mean, sd)
s3 = self.n1.sample(self.shape, mean, sd)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_sample_graph():
shape = (2, 3)
seed = 0
samp = Sampling(shape, seed=seed)
sample1, sample2, sample3 = samp()
assert ((sample1 != sample2).any() and (sample1 != sample3).any() and (sample2 != sample3).any()), \
"The results should be different!"
class CompositeNormalNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(CompositeNormalNet, self).__init__()
self.shape = shape
self.seed = seed
def construct(self, mean, stddev):
s1 = C.normal(self.shape, mean, stddev, self.seed)
s2 = C.normal(self.shape, mean, stddev, self.seed)
s3 = C.normal(self.shape, mean, stddev, self.seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_composite_normal():
shape = (3, 2, 4)
mean = Tensor(0.0, mstype.float32)
stddev = Tensor(1.0, mstype.float32)
net = CompositeNormalNet(shape)
s1, s2, s3 = net(mean, stddev)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class CompositeLaplaceNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(CompositeLaplaceNet, self).__init__()
self.shape = shape
self.seed = seed
def construct(self, mean, lambda_param):
s1 = C.laplace(self.shape, mean, lambda_param, self.seed)
s2 = C.laplace(self.shape, mean, lambda_param, self.seed)
s3 = C.laplace(self.shape, mean, lambda_param, self.seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_composite_laplace():
shape = (3, 2, 4)
mean = Tensor(1.0, mstype.float32)
lambda_param = Tensor(1.0, mstype.float32)
net = CompositeLaplaceNet(shape)
s1, s2, s3 = net(mean, lambda_param)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class CompositeGammaNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(CompositeGammaNet, self).__init__()
self.shape = shape
self.seed = seed
def construct(self, alpha, beta):
s1 = C.gamma(self.shape, alpha, beta, self.seed)
s2 = C.gamma(self.shape, alpha, beta, self.seed)
s3 = C.gamma(self.shape, alpha, beta, self.seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_composite_gamma():
shape = (3, 2, 4)
alpha = Tensor(1.0, mstype.float32)
beta = Tensor(1.0, mstype.float32)
net = CompositeGammaNet(shape)
s1, s2, s3 = net(alpha, beta)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class CompositePoissonNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(CompositePoissonNet, self).__init__()
self.shape = shape
self.seed = seed
def construct(self, mean):
s1 = C.poisson(self.shape, mean, self.seed)
s2 = C.poisson(self.shape, mean, self.seed)
s3 = C.poisson(self.shape, mean, self.seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_composite_poisson():
shape = (3, 2, 4)
mean = Tensor(2.0, mstype.float32)
net = CompositePoissonNet(shape)
s1, s2, s3 = net(mean)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class CompositeUniformNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(CompositeUniformNet, self).__init__()
self.shape = shape
self.seed = seed
def construct(self, a, b):
s1 = C.uniform(self.shape, a, b, self.seed)
s2 = C.uniform(self.shape, a, b, self.seed)
s3 = C.uniform(self.shape, a, b, self.seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_composite_uniform():
shape = (3, 2, 4)
a = Tensor(0.0, mstype.float32)
b = Tensor(1.0, mstype.float32)
net = CompositeUniformNet(shape)
s1, s2, s3 = net(a, b)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class StandardNormalNet(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(StandardNormalNet, self).__init__()
self.shape = shape
self.seed = seed
self.seed2 = seed2
self.standard_normal = P.StandardNormal(seed, seed2)
def construct(self):
s1 = self.standard_normal(self.shape)
s2 = self.standard_normal(self.shape)
s3 = self.standard_normal(self.shape)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_standard_normal():
shape = (4, 16)
net = StandardNormalNet(shape)
s1, s2, s3 = net()
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class StandardLaplaceNet(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(StandardLaplaceNet, self).__init__()
self.shape = shape
self.seed = seed
self.seed2 = seed2
self.standard_laplace = P.StandardLaplace(seed, seed2)
def construct(self):
s1 = self.standard_laplace(self.shape)
s2 = self.standard_laplace(self.shape)
s3 = self.standard_laplace(self.shape)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_standard_laplace():
shape = (4, 16)
net = StandardLaplaceNet(shape)
s1, s2, s3 = net()
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class GammaNet(nn.Cell):
def __init__(self, shape, alpha, beta, seed=0, seed2=0):
super(GammaNet, self).__init__()
self.shape = shape
self.alpha = alpha
self.beta = beta
self.seed = seed
self.seed2 = seed2
self.gamma = P.Gamma(seed, seed2)
def construct(self):
s1 = self.gamma(self.shape, self.alpha, self.beta)
s2 = self.gamma(self.shape, self.alpha, self.beta)
s3 = self.gamma(self.shape, self.alpha, self.beta)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_gamma():
shape = (4, 16)
alpha = Tensor(1.0, mstype.float32)
beta = Tensor(1.0, mstype.float32)
net = GammaNet(shape, alpha, beta)
s1, s2, s3 = net()
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class PoissonNet(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(PoissonNet, self).__init__()
self.shape = shape
self.seed = seed
self.seed2 = seed2
self.poisson = P.Poisson(seed, seed2)
def construct(self, mean):
s1 = self.poisson(self.shape, mean)
s2 = self.poisson(self.shape, mean)
s3 = self.poisson(self.shape, mean)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_poisson():
shape = (4, 16)
mean = Tensor(5.0, mstype.float32)
net = PoissonNet(shape=shape)
s1, s2, s3 = net(mean)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class UniformIntNet(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(UniformIntNet, self).__init__()
self.shape = shape
self.seed = seed
self.seed2 = seed2
self.uniform_int = P.UniformInt(seed, seed2)
def construct(self, minval, maxval):
s1 = self.uniform_int(self.shape, minval, maxval)
s2 = self.uniform_int(self.shape, minval, maxval)
s3 = self.uniform_int(self.shape, minval, maxval)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_uniform_int():
shape = (4, 16)
minval = Tensor(1, mstype.int32)
maxval = Tensor(5, mstype.int32)
net = UniformIntNet(shape)
s1, s2, s3 = net(minval, maxval)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class UniformRealNet(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(UniformRealNet, self).__init__()
self.shape = shape
self.seed = seed
self.seed2 = seed2
self.uniform_real = P.UniformReal(seed, seed2)
def construct(self):
s1 = self.uniform_real(self.shape)
s2 = self.uniform_real(self.shape)
s3 = self.uniform_real(self.shape)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_uniform_real():
shape = (4, 16)
net = UniformRealNet(shape)
s1, s2, s3 = net()
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class DropoutGenMaskNet(nn.Cell):
def __init__(self, shape):
super(DropoutGenMaskNet, self).__init__()
self.shape = shape
self.dropout_gen_mask = P.DropoutGenMask(Seed0=0, Seed1=0)
def construct(self, keep_prob):
s1 = self.dropout_gen_mask(self.shape, keep_prob)
s2 = self.dropout_gen_mask(self.shape, keep_prob)
s3 = self.dropout_gen_mask(self.shape, keep_prob)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_dropout_gen_mask():
shape = (2, 4, 5)
keep_prob = Tensor(0.5, mstype.float32)
net = DropoutGenMaskNet(shape)
s1, s2, s3 = net(keep_prob)
assert ((s1 != s2).any() and (s1 != s3).any() and (s2 != s3).any()), \
"The results should be different!"
class RandomChoiceWithMaskNet(nn.Cell):
def __init__(self):
super(RandomChoiceWithMaskNet, self).__init__()
self.rnd_choice_mask = P.RandomChoiceWithMask(count=4, seed=0)
def construct(self, x):
index1, _ = self.rnd_choice_mask(x)
index2, _ = self.rnd_choice_mask(x)
index3, _ = self.rnd_choice_mask(x)
return index1, index2, index3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_random_choice_with_mask():
net = RandomChoiceWithMaskNet()
x = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
index1, index2, index3 = net(x)
assert ((index1 != index2).any() and (index1 != index3).any() and (index2 != index3).any()), \
"The results should be different!"
class RandomCategoricalNet(nn.Cell):
def __init__(self, num_sample):
super(RandomCategoricalNet, self).__init__()
self.random_categorical = P.RandomCategorical(mstype.int64)
self.num_sample = num_sample
def construct(self, logits, seed=0):
s1 = self.random_categorical(logits, self.num_sample, seed)
s2 = self.random_categorical(logits, self.num_sample, seed)
s3 = self.random_categorical(logits, self.num_sample, seed)
return s1, s2, s3
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_random_categorical():
num_sample = 8
net = RandomCategoricalNet(num_sample)
x = Tensor(np.random.random((10, 5)).astype(np.float32))
# Outputs may be the same, only basic functions are verified here.
net(x)