You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/communication/test_comm.py

156 lines
5.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" test Communicate """
import numpy as np
from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp
from mindspore.ops.operations.comm_ops import Broadcast
from mindspore.communication.management import HCCL_WORLD_COMM_GROUP, NCCL_WORLD_COMM_GROUP, GlobalComm, init
from mindspore.communication._comm_helper import Backend
from mindspore import Tensor
import mindspore.nn as nn
from mindspore.ops.operations import Split
from mindspore.common.api import _executor
from mindspore.nn import Dense
from mindspore.nn import ReLU
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Momentum
import mindspore.context as context
# pylint: disable=W0212
# W0212: protected-access
tag = 0
init("hccl")
class AllReduceNet(nn.Cell):
"""AllReduceNet definition"""
def __init__(self, input_channel, out_channel, op):
super(AllReduceNet, self).__init__()
self.dense = Dense(input_channel, out_channel)
self.reduce = AllReduce(op)
self.relu = ReLU()
def construct(self, x):
x = self.dense(x)
x = self.reduce(x)
return self.relu(x)
class BroadCastNet(nn.Cell):
"""BroadCastNet definition"""
def __init__(self, input_channel, out_channel):
super(BroadCastNet, self).__init__()
self.dense = Dense(input_channel, out_channel)
self.broadcast = Broadcast(0)
def construct(self, x):
x, = self.broadcast((x,))
x = self.dense(x)
return x
class AllGatherNet(nn.Cell):
"""AllGatherNet definition"""
def __init__(self, input_channel, out_channel):
super(AllGatherNet, self).__init__()
self.dense = Dense(input_channel, out_channel)
if GlobalComm.BACKEND is Backend.HCCL:
self.allgather = AllGather(group=HCCL_WORLD_COMM_GROUP)
elif GlobalComm.BACKEND is Backend.NCCL:
self.allgather = AllGather(group=NCCL_WORLD_COMM_GROUP)
else:
self.allgather = AllGather()
self.relu = ReLU()
def construct(self, x):
x = self.dense(x)
x = self.allgather(x)
return self.relu(x)
class AlltoAllNet(nn.Cell):
"""AlltoAllNet definition"""
def __init__(self, input_channel, out_channel):
super(AlltoAllNet, self).__init__()
self.dense = Dense(input_channel, out_channel)
self.alltoall = _AlltoAll(1, 0, 1)
self.relu = ReLU()
def construct(self, x):
x = self.dense(x)
x = self.alltoall(x)
return self.relu(x)
def run_allreduce(op):
"""run_allreduce"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
network = AllReduceNet(2, 1, op)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor, label_tensor)
def test_allreduce():
"""test_allreduce"""
context.set_context(mode=context.GRAPH_MODE)
run_allreduce(ReduceOp.SUM)
run_allreduce(ReduceOp.MAX)
run_allreduce(ReduceOp.MIN)
def test_allgather():
"""test_allgather"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
network = AllGatherNet(2, 1)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor, label_tensor)
def test_broadcast():
"""test_broadcast"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor_1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
network = BroadCastNet(2, 1)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor_1, label_tensor)
def test_alltoall():
"""test_alltoall"""
context.set_context(mode=context.GRAPH_MODE)
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
network = AlltoAllNet(2, 1)
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
learning_rate=0.1,
momentum=0.9)
network = WithLossCell(network, loss_fn)
network = TrainOneStepCell(network, optimizer)
_executor.compile(network, input_tensor, label_tensor)