You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.8 KiB
156 lines
5.8 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
""" test Communicate """
|
|
import numpy as np
|
|
from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp
|
|
from mindspore.ops.operations.comm_ops import Broadcast
|
|
from mindspore.communication.management import HCCL_WORLD_COMM_GROUP, NCCL_WORLD_COMM_GROUP, GlobalComm, init
|
|
from mindspore.communication._comm_helper import Backend
|
|
from mindspore import Tensor
|
|
import mindspore.nn as nn
|
|
from mindspore.ops.operations import Split
|
|
from mindspore.common.api import _executor
|
|
from mindspore.nn import Dense
|
|
from mindspore.nn import ReLU
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn import Momentum
|
|
import mindspore.context as context
|
|
# pylint: disable=W0212
|
|
# W0212: protected-access
|
|
|
|
tag = 0
|
|
|
|
init("hccl")
|
|
|
|
class AllReduceNet(nn.Cell):
|
|
"""AllReduceNet definition"""
|
|
def __init__(self, input_channel, out_channel, op):
|
|
super(AllReduceNet, self).__init__()
|
|
self.dense = Dense(input_channel, out_channel)
|
|
self.reduce = AllReduce(op)
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x):
|
|
x = self.dense(x)
|
|
x = self.reduce(x)
|
|
return self.relu(x)
|
|
|
|
class BroadCastNet(nn.Cell):
|
|
"""BroadCastNet definition"""
|
|
def __init__(self, input_channel, out_channel):
|
|
super(BroadCastNet, self).__init__()
|
|
self.dense = Dense(input_channel, out_channel)
|
|
self.broadcast = Broadcast(0)
|
|
|
|
def construct(self, x):
|
|
x, = self.broadcast((x,))
|
|
x = self.dense(x)
|
|
return x
|
|
|
|
class AllGatherNet(nn.Cell):
|
|
"""AllGatherNet definition"""
|
|
def __init__(self, input_channel, out_channel):
|
|
super(AllGatherNet, self).__init__()
|
|
self.dense = Dense(input_channel, out_channel)
|
|
if GlobalComm.BACKEND is Backend.HCCL:
|
|
self.allgather = AllGather(group=HCCL_WORLD_COMM_GROUP)
|
|
elif GlobalComm.BACKEND is Backend.NCCL:
|
|
self.allgather = AllGather(group=NCCL_WORLD_COMM_GROUP)
|
|
else:
|
|
self.allgather = AllGather()
|
|
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x):
|
|
x = self.dense(x)
|
|
x = self.allgather(x)
|
|
return self.relu(x)
|
|
|
|
class AlltoAllNet(nn.Cell):
|
|
"""AlltoAllNet definition"""
|
|
def __init__(self, input_channel, out_channel):
|
|
super(AlltoAllNet, self).__init__()
|
|
self.dense = Dense(input_channel, out_channel)
|
|
self.alltoall = _AlltoAll(1, 0, 1)
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x):
|
|
x = self.dense(x)
|
|
x = self.alltoall(x)
|
|
return self.relu(x)
|
|
|
|
def run_allreduce(op):
|
|
"""run_allreduce"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
|
|
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
|
|
network = AllReduceNet(2, 1, op)
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
|
learning_rate=0.1,
|
|
momentum=0.9)
|
|
network = WithLossCell(network, loss_fn)
|
|
network = TrainOneStepCell(network, optimizer)
|
|
_executor.compile(network, input_tensor, label_tensor)
|
|
|
|
def test_allreduce():
|
|
"""test_allreduce"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
run_allreduce(ReduceOp.SUM)
|
|
run_allreduce(ReduceOp.MAX)
|
|
run_allreduce(ReduceOp.MIN)
|
|
|
|
def test_allgather():
|
|
"""test_allgather"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
|
|
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
|
|
network = AllGatherNet(2, 1)
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
|
learning_rate=0.1,
|
|
momentum=0.9)
|
|
network = WithLossCell(network, loss_fn)
|
|
network = TrainOneStepCell(network, optimizer)
|
|
_executor.compile(network, input_tensor, label_tensor)
|
|
|
|
def test_broadcast():
|
|
"""test_broadcast"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
input_tensor_1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
|
|
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
|
|
network = BroadCastNet(2, 1)
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
|
learning_rate=0.1,
|
|
momentum=0.9)
|
|
network = WithLossCell(network, loss_fn)
|
|
network = TrainOneStepCell(network, optimizer)
|
|
_executor.compile(network, input_tensor_1, label_tensor)
|
|
|
|
def test_alltoall():
|
|
"""test_alltoall"""
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
|
|
label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
|
|
network = AlltoAllNet(2, 1)
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
|
|
learning_rate=0.1,
|
|
momentum=0.9)
|
|
network = WithLossCell(network, loss_fn)
|
|
network = TrainOneStepCell(network, optimizer)
|
|
_executor.compile(network, input_tensor, label_tensor)
|