You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/test_embedding.py

66 lines
2.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_embedding """
import numpy as np
import pytest
from mindspore.model_zoo.Bert_NEZHA import EmbeddingLookup, EmbeddingPostprocessor
from mindspore import Tensor
from mindspore import dtype as mstype
from ..ut_filter import non_graph_engine
@non_graph_engine
def test_check_embedding_lookup_1():
m = EmbeddingLookup(vocab_size=32000,
embedding_size=768,
embedding_shape=[1, 128, 768],
use_one_hot_embeddings=False)
m(Tensor(np.ones([128]), mstype.int32))
@non_graph_engine
def test_check_embedding_lookup_2():
m = EmbeddingLookup(vocab_size=32000,
embedding_size=768,
embedding_shape=[1, 128, 768],
use_one_hot_embeddings=True)
m(Tensor(np.ones([128]), mstype.int32))
@non_graph_engine
def test_check_embedding_lookup_3():
m = EmbeddingLookup(vocab_size=32000,
embedding_size=768,
embedding_shape=[1, 128, 768],
use_one_hot_embeddings=True,
initializer_range=0.01)
m(Tensor(np.ones([128]), mstype.int32))
@non_graph_engine
def test_embedding_post_1():
m = EmbeddingPostprocessor(embedding_size=768,
embedding_shape=[1, 128, 768],
use_token_type=True)
m(Tensor(np.ones([128]), mstype.int32), Tensor(np.ones([1, 128, 768]), mstype.float32))
@non_graph_engine
def test_embedding_post_2():
m = EmbeddingPostprocessor(embedding_size=768,
embedding_shape=[1, 128, 768],
use_token_type=True,
initializer_range=0.3)
m(Tensor(np.ones([128]), mstype.int32), Tensor(np.ones([1, 128, 768]), mstype.float32))