You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/minddata/dataset/api/datasets.cc

2276 lines
88 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <fstream>
#include <unordered_set>
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/samplers.h"
#include "minddata/dataset/include/transforms.h"
// Source dataset headers (in alphabetical order)
#include "minddata/dataset/engine/dataset_iterator.h"
#include "minddata/dataset/engine/datasetops/source/album_op.h"
#include "minddata/dataset/engine/datasetops/source/celeba_op.h"
#include "minddata/dataset/engine/datasetops/source/cifar_op.h"
#include "minddata/dataset/engine/datasetops/source/clue_op.h"
#include "minddata/dataset/engine/datasetops/source/coco_op.h"
#include "minddata/dataset/engine/datasetops/source/csv_op.h"
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/datasetops/source/manifest_op.h"
#include "minddata/dataset/engine/datasetops/source/mindrecord_op.h"
#endif
#include "minddata/dataset/engine/datasetops/source/mnist_op.h"
#include "minddata/dataset/engine/datasetops/source/random_data_op.h"
#include "minddata/dataset/engine/datasetops/source/text_file_op.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/datasetops/source/tf_reader_op.h"
#include "minddata/dataset/engine/datasetops/source/voc_op.h"
#endif
// Dataset operator headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/batch_op.h"
#ifndef ENABLE_ANDROID
#include "minddata/dataset/engine/datasetops/bucket_batch_by_length_op.h"
#endif
#include "minddata/dataset/engine/datasetops/build_vocab_op.h"
#include "minddata/dataset/engine/datasetops/concat_op.h"
#include "minddata/dataset/engine/datasetops/map_op/map_op.h"
#include "minddata/dataset/engine/datasetops/project_op.h"
#include "minddata/dataset/engine/datasetops/rename_op.h"
#include "minddata/dataset/engine/datasetops/repeat_op.h"
#include "minddata/dataset/engine/datasetops/shuffle_op.h"
#include "minddata/dataset/engine/datasetops/skip_op.h"
#include "minddata/dataset/engine/datasetops/take_op.h"
#include "minddata/dataset/engine/datasetops/zip_op.h"
// Sampler headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/source/sampler/random_sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/util/random.h"
namespace mindspore {
namespace dataset {
namespace api {
#define RETURN_EMPTY_IF_ERROR(_s) \
do { \
Status __rc = (_s); \
if (__rc.IsError()) { \
MS_LOG(ERROR) << __rc; \
return {}; \
} \
} while (false)
// Function to create the iterator, which will build and launch the execution tree.
std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> columns) {
std::shared_ptr<Iterator> iter;
try {
auto ds = shared_from_this();
// The specified columns will be selected from the dataset and passed down the pipeline
// in the order specified, other columns will be discarded.
if (!columns.empty()) {
ds = ds->Project(columns);
}
iter = std::make_shared<Iterator>();
Status rc = iter->BuildAndLaunchTree(ds);
if (rc.IsError()) {
MS_LOG(ERROR) << "CreateIterator failed." << rc;
return nullptr;
}
return iter;
} catch (const std::exception &err) {
MS_LOG(ERROR) << "CreateIterator: Iterator exception caught: " << err.what();
return nullptr;
}
return iter;
}
// Constructor
Dataset::Dataset() {
// Fetch some default value from config manager
std::shared_ptr<ConfigManager> cfg = GlobalContext::config_manager();
num_workers_ = cfg->num_parallel_workers();
rows_per_buffer_ = cfg->rows_per_buffer();
connector_que_size_ = cfg->op_connector_size();
worker_connector_size_ = cfg->worker_connector_size();
}
/// \brief Function to create a SchemaObj
/// \param[in] schema_file Path of schema file
/// \return Shared pointer to the current schema
std::shared_ptr<SchemaObj> Schema(const std::string &schema_file) {
auto schema = std::make_shared<SchemaObj>(schema_file);
return schema->init() ? schema : nullptr;
}
// FUNCTIONS TO CREATE DATASETS FOR LEAF-NODE DATASETS
// (In alphabetical order)
// Function to create a AlbumNode.
std::shared_ptr<AlbumNode> Album(const std::string &dataset_dir, const std::string &data_schema,
const std::vector<std::string> &column_names, bool decode,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<AlbumNode>(dataset_dir, data_schema, column_names, decode, sampler);
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CelebANode.
std::shared_ptr<CelebANode> CelebA(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler, bool decode,
const std::set<std::string> &extensions) {
auto ds = std::make_shared<CelebANode>(dataset_dir, usage, sampler, decode, extensions);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Cifar10Node.
std::shared_ptr<Cifar10Node> Cifar10(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<Cifar10Node>(dataset_dir, usage, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Cifar100Node.
std::shared_ptr<Cifar100Node> Cifar100(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<Cifar100Node>(dataset_dir, usage, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CLUENode.
std::shared_ptr<CLUENode> CLUE(const std::vector<std::string> &clue_files, const std::string &task,
const std::string &usage, int64_t num_samples, ShuffleMode shuffle, int32_t num_shards,
int32_t shard_id) {
auto ds = std::make_shared<CLUENode>(clue_files, task, usage, num_samples, shuffle, num_shards, shard_id);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CocoNode.
std::shared_ptr<CocoNode> Coco(const std::string &dataset_dir, const std::string &annotation_file,
const std::string &task, const bool &decode,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<CocoNode>(dataset_dir, annotation_file, task, decode, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a CSVNode.
std::shared_ptr<CSVNode> CSV(const std::vector<std::string> &dataset_files, char field_delim,
const std::vector<std::shared_ptr<CsvBase>> &column_defaults,
const std::vector<std::string> &column_names, int64_t num_samples, ShuffleMode shuffle,
int32_t num_shards, int32_t shard_id) {
auto ds = std::make_shared<CSVNode>(dataset_files, field_delim, column_defaults, column_names, num_samples, shuffle,
num_shards, shard_id);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a ImageFolderNode.
std::shared_ptr<ImageFolderNode> ImageFolder(const std::string &dataset_dir, bool decode,
const std::shared_ptr<SamplerObj> &sampler,
const std::set<std::string> &extensions,
const std::map<std::string, int32_t> &class_indexing) {
// This arg exists in ImageFolderOp, but not externalized (in Python API). The default value is false.
bool recursive = false;
// Create logical representation of ImageFolderNode.
auto ds = std::make_shared<ImageFolderNode>(dataset_dir, decode, sampler, recursive, extensions, class_indexing);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#ifndef ENABLE_ANDROID
// Function to create a ManifestNode.
std::shared_ptr<ManifestNode> Manifest(const std::string &dataset_file, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::map<std::string, int32_t> &class_indexing, bool decode) {
auto ds = std::make_shared<ManifestNode>(dataset_file, usage, sampler, class_indexing, decode);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#endif
// Function to create a MindDataNode.
std::shared_ptr<MindDataNode> MindData(const std::string &dataset_file, const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample,
int64_t num_padded) {
auto ds = std::make_shared<MindDataNode>(dataset_file, columns_list, sampler, padded_sample, num_padded);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a MindDataNode.
std::shared_ptr<MindDataNode> MindData(const std::vector<std::string> &dataset_files,
const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample,
int64_t num_padded) {
auto ds = std::make_shared<MindDataNode>(dataset_files, columns_list, sampler, padded_sample, num_padded);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a MnistNode.
std::shared_ptr<MnistNode> Mnist(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<MnistNode>(dataset_dir, usage, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to overload "+" operator to concat two datasets
std::shared_ptr<ConcatNode> operator+(const std::shared_ptr<Dataset> &datasets1,
const std::shared_ptr<Dataset> &datasets2) {
std::shared_ptr<ConcatNode> ds = std::make_shared<ConcatNode>(std::vector({datasets2, datasets1}));
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a TextFileNode.
std::shared_ptr<TextFileNode> TextFile(const std::vector<std::string> &dataset_files, int64_t num_samples,
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id) {
auto ds = std::make_shared<TextFileNode>(dataset_files, num_samples, shuffle, num_shards, shard_id);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#ifndef ENABLE_ANDROID
// Function to create a VOCNode.
std::shared_ptr<VOCNode> VOC(const std::string &dataset_dir, const std::string &task, const std::string &usage,
const std::map<std::string, int32_t> &class_indexing, bool decode,
const std::shared_ptr<SamplerObj> &sampler) {
auto ds = std::make_shared<VOCNode>(dataset_dir, task, usage, class_indexing, decode, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
#endif
// Function to create a ZipNode.
std::shared_ptr<ZipNode> Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
auto ds = std::make_shared<ZipNode>(datasets);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// FUNCTIONS TO CREATE DATASETS FOR DATASET OPS
// (In alphabetical order)
// Function to create a Batch dataset
std::shared_ptr<BatchNode> Dataset::Batch(int32_t batch_size, bool drop_remainder) {
// Default values
std::vector<std::string> cols_to_map = {};
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map;
bool pad = false;
auto ds = std::make_shared<BatchNode>(shared_from_this(), batch_size, drop_remainder, pad, cols_to_map, pad_map);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
#ifndef ENABLE_ANDROID
// Function to create a BucketBatchByLength dataset
std::shared_ptr<BucketBatchByLengthNode> Dataset::BucketBatchByLength(
const std::vector<std::string> &column_names, const std::vector<int32_t> &bucket_boundaries,
const std::vector<int32_t> &bucket_batch_sizes, std::function<TensorRow(TensorRow)> element_length_function,
const std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> &pad_info, bool pad_to_bucket_boundary,
bool drop_remainder) {
auto ds = std::make_shared<BucketBatchByLengthNode>(shared_from_this(), column_names, bucket_boundaries,
bucket_batch_sizes, element_length_function, pad_info,
pad_to_bucket_boundary, drop_remainder);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a Vocab from dataset
std::shared_ptr<Vocab> Dataset::BuildVocab(const std::vector<std::string> &columns,
const std::pair<int64_t, int64_t> &freq_range, int64_t top_k,
const std::vector<std::string> &special_tokens, bool special_first) {
auto vocab = std::make_shared<Vocab>();
auto ds = std::make_shared<BuildVocabNode>(shared_from_this(), vocab, columns, freq_range, top_k, special_tokens,
special_first);
if (!ds->ValidateParams()) {
return nullptr;
}
// Run tree here to starting building vocab
std::shared_ptr<Iterator> iter = ds->CreateIterator();
if (iter == nullptr) {
MS_LOG(ERROR) << "Fail to run iterator in BuildVocab.";
return nullptr;
}
// Finish building vocab by triggering GetNextRow
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
if (!iter->GetNextRow(&row)) {
return nullptr;
}
return vocab;
}
#endif
// Function to create a Concat dataset
std::shared_ptr<ConcatNode> Dataset::Concat(const std::vector<std::shared_ptr<Dataset>> &datasets) {
auto ds = std::make_shared<ConcatNode>(datasets);
ds->children.push_back(shared_from_this());
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Map dataset.
std::shared_ptr<MapNode> Dataset::Map(std::vector<std::shared_ptr<TensorOperation>> operations,
std::vector<std::string> input_columns, std::vector<std::string> output_columns,
const std::vector<std::string> &project_columns) {
auto ds = std::make_shared<MapNode>(shared_from_this(), operations, input_columns, output_columns, project_columns);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a ProjectNode.
std::shared_ptr<ProjectNode> Dataset::Project(const std::vector<std::string> &columns) {
auto ds = std::make_shared<ProjectNode>(shared_from_this(), columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a RenameNode.
std::shared_ptr<RenameNode> Dataset::Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns) {
auto ds = std::make_shared<RenameNode>(shared_from_this(), input_columns, output_columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create Repeat dataset.
std::shared_ptr<Dataset> Dataset::Repeat(int32_t count) {
// Workaround for repeat == 1, do not inject repeat.
if (count == 1) {
return shared_from_this();
}
auto ds = std::make_shared<RepeatNode>(shared_from_this(), count);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a ShuffleOp
std::shared_ptr<ShuffleNode> Dataset::Shuffle(int32_t buffer_size) {
// Pass in reshuffle_each_epoch with true
auto ds = std::make_shared<ShuffleNode>(shared_from_this(), buffer_size, true);
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a SkipNode.
std::shared_ptr<SkipNode> Dataset::Skip(int32_t count) {
auto ds = std::make_shared<SkipNode>(shared_from_this(), count);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a TakeNode.
std::shared_ptr<Dataset> Dataset::Take(int32_t count) {
// If count is greater than the number of element in dataset or equal to -1,
// all the element in dataset will be taken
if (count == -1) {
return shared_from_this();
}
auto ds = std::make_shared<TakeNode>(shared_from_this(), count);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
return ds;
}
// Function to create a Zip dataset
std::shared_ptr<ZipNode> Dataset::Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
// Default values
auto ds = std::make_shared<ZipNode>(datasets);
ds->children.push_back(shared_from_this());
return ds->ValidateParams() ? ds : nullptr;
}
SchemaObj::SchemaObj(const std::string &schema_file) : schema_file_(schema_file), num_rows_(0), dataset_type_("") {}
// SchemaObj init function
bool SchemaObj::init() {
if (schema_file_ != "") {
Path schema_file(schema_file_);
if (!schema_file.Exists()) {
MS_LOG(ERROR) << "The file " << schema_file << " does not exist or permission denied!";
return false;
}
nlohmann::json js;
try {
std::ifstream in(schema_file_);
in >> js;
if (js.find("columns") == js.end()) {
MS_LOG(ERROR) << "\"columns\" node is required in the schema json file.";
return false;
}
} catch (const std::exception &err) {
MS_LOG(ERROR) << "Schema file failed to load";
return false;
}
return from_json(js);
}
return true;
}
// Function to add a column to schema with a mstype de_type
bool SchemaObj::add_column(std::string name, TypeId de_type, std::vector<int32_t> shape) {
nlohmann::json new_column;
new_column["name"] = name;
// if de_type is mstype
DataType data_type = dataset::MSTypeToDEType(de_type);
new_column["type"] = data_type.ToString();
if (shape.size() > 0) {
new_column["shape"] = shape;
new_column["rank"] = shape.size();
} else {
new_column["rank"] = 1;
}
columns_.push_back(new_column);
return true;
}
// Function to add a column to schema with a string de_type
bool SchemaObj::add_column(std::string name, std::string de_type, std::vector<int32_t> shape) {
nlohmann::json new_column;
new_column["name"] = name;
DataType data_type(de_type);
new_column["type"] = data_type.ToString();
if (shape.size() > 0) {
new_column["shape"] = shape;
new_column["rank"] = shape.size();
} else {
new_column["rank"] = 1;
}
columns_.push_back(new_column);
return true;
}
std::string SchemaObj::to_json() {
nlohmann::json json_file;
json_file["columns"] = columns_;
if (dataset_type_ != "") {
json_file["datasetType"] = dataset_type_;
}
if (num_rows_ > 0) {
json_file["numRows"] = num_rows_;
}
return json_file.dump(2);
}
bool SchemaObj::parse_column(nlohmann::json columns) {
std::string name, de_type;
std::vector<int32_t> shape;
columns_.clear();
if (columns.type() == nlohmann::json::value_t::array) {
// reference to python list
for (auto column : columns) {
auto key_name = column.find("name");
if (key_name == column.end()) {
MS_LOG(ERROR) << "Column's name is missing";
return false;
}
name = *key_name;
auto key_type = column.find("type");
if (key_type == column.end()) {
MS_LOG(ERROR) << "Column's type is missing";
return false;
}
de_type = *key_type;
shape.clear();
auto key_shape = column.find("shape");
if (key_shape != column.end()) {
shape.insert(shape.end(), (*key_shape).begin(), (*key_shape).end());
}
if (!add_column(name, de_type, shape)) {
return false;
}
}
} else if (columns.type() == nlohmann::json::value_t::object) {
for (const auto &it_child : columns.items()) {
name = it_child.key();
auto key_type = it_child.value().find("type");
if (key_type == it_child.value().end()) {
MS_LOG(ERROR) << "Column's type is missing";
return false;
}
de_type = *key_type;
shape.clear();
auto key_shape = it_child.value().find("shape");
if (key_shape != it_child.value().end()) {
shape.insert(shape.end(), (*key_shape).begin(), (*key_shape).end());
}
if (!add_column(name, de_type, shape)) {
return false;
}
}
} else {
MS_LOG(ERROR) << "columns must be dict or list, columns contain name, type, shape(optional).";
return false;
}
return true;
}
bool SchemaObj::from_json(nlohmann::json json_obj) {
for (const auto &it_child : json_obj.items()) {
if (it_child.key() == "datasetType") {
dataset_type_ = it_child.value();
} else if (it_child.key() == "numRows") {
num_rows_ = it_child.value();
} else if (it_child.key() == "columns") {
if (!parse_column(it_child.value())) {
MS_LOG(ERROR) << "parse columns failed";
return false;
}
} else {
MS_LOG(ERROR) << "Unknown field " << it_child.key();
return false;
}
}
if (columns_.empty()) {
MS_LOG(ERROR) << "Columns are missing.";
return false;
}
if (num_rows_ <= 0) {
MS_LOG(ERROR) << "numRows must be greater than 0";
return false;
}
return true;
}
// OTHER FUNCTIONS
// Helper function to compute a default shuffle size
Status ComputeShuffleSize(int64_t num_files, int64_t num_devices, int64_t num_rows, int64_t total_rows,
int64_t *shuffle_size) {
const int64_t average_files_multiplier = 4;
const int64_t shuffle_max = 10000;
int64_t avg_rows_per_file = 0;
// Adjust the num rows per shard if sharding was given
if (num_devices > 0) {
if (num_rows % num_devices == 0) {
num_rows = num_rows / num_devices;
} else {
num_rows = (num_rows / num_devices) + 1;
}
}
// Cap based on total rows directive. Some ops do not have this and give value of 0.
if (total_rows > 0) {
num_rows = std::min(num_rows, total_rows);
}
// get the average per file
CHECK_FAIL_RETURN_UNEXPECTED(num_files != 0, "The size of dataset_files must greater than 0.");
avg_rows_per_file = num_rows / num_files;
*shuffle_size = std::max(avg_rows_per_file * average_files_multiplier, shuffle_max);
return Status::OK();
}
// Helper function to inject a shuffle operator over top of current operator being built
Status AddShuffleOp(int64_t num_files, int64_t num_devices, int64_t num_rows, int64_t total_rows,
int32_t connector_que_size, int32_t rows_per_buffer, std::shared_ptr<DatasetOp> *shuffle_op) {
std::shared_ptr<ShuffleOp> new_shuffle_op = nullptr;
int64_t shuffle_size = 0;
RETURN_EMPTY_IF_ERROR(ComputeShuffleSize(num_files, num_devices, num_rows, total_rows, &shuffle_size));
MS_LOG(INFO) << "Dataset::AddShuffleOp - num_rows: " << num_rows << ", shuffle_size: " << shuffle_size;
// Add the shuffle op
*shuffle_op = std::make_shared<ShuffleOp>(shuffle_size, GetSeed(), connector_que_size, true, rows_per_buffer);
return Status::OK();
}
// Helper function to validate dataset directory parameter
Status ValidateDatasetDirParam(const std::string &dataset_name, std::string dataset_dir) {
if (dataset_dir.empty()) {
std::string err_msg = dataset_name + ": dataset_dir is not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
Path dir(dataset_dir);
if (!dir.IsDirectory()) {
std::string err_msg = dataset_name + ": dataset_dir: [" + dataset_dir + "] is an invalid directory path.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (access(dataset_dir.c_str(), R_OK) == -1) {
std::string err_msg = dataset_name + ": No access to specified dataset path: " + dataset_dir;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset dataset files parameter
Status ValidateDatasetFilesParam(const std::string &dataset_name, const std::vector<std::string> &dataset_files) {
if (dataset_files.empty()) {
std::string err_msg = dataset_name + ": dataset_files is not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (auto f : dataset_files) {
Path dataset_file(f);
if (!dataset_file.Exists()) {
std::string err_msg = dataset_name + ": dataset file: [" + f + "] is invalid or does not exist.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (access(dataset_file.toString().c_str(), R_OK) == -1) {
std::string err_msg = dataset_name + ": No access to specified dataset file: " + f;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
return Status::OK();
}
// Helper function to validate dataset num_shards and shard_id parameters
Status ValidateDatasetShardParams(const std::string &dataset_name, int32_t num_shards, int32_t shard_id) {
if (num_shards <= 0) {
std::string err_msg = dataset_name + ": Invalid num_shards: " + std::to_string(num_shards);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (shard_id < 0 || shard_id >= num_shards) {
// num_shards;
std::string err_msg = dataset_name + ": Invalid input, shard_id: " + std::to_string(shard_id) +
", num_shards: " + std::to_string(num_shards);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset sampler parameter
Status ValidateDatasetSampler(const std::string &dataset_name, const std::shared_ptr<SamplerObj> &sampler) {
if (sampler == nullptr) {
MS_LOG(ERROR) << dataset_name << ": Sampler is not constructed correctly, sampler: nullptr";
std::string err_msg = dataset_name + ": Sampler is not constructed correctly, sampler: nullptr";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
Status ValidateStringValue(const std::string &str, const std::unordered_set<std::string> &valid_strings) {
if (valid_strings.find(str) == valid_strings.end()) {
std::string mode;
mode = std::accumulate(valid_strings.begin(), valid_strings.end(), mode,
[](std::string a, std::string b) { return std::move(a) + " " + std::move(b); });
std::string err_msg = str + " does not match any mode in [" + mode + " ]";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Helper function to validate dataset input/output column parameter
Status ValidateDatasetColumnParam(const std::string &dataset_name, const std::string &column_param,
const std::vector<std::string> &columns) {
if (columns.empty()) {
std::string err_msg = dataset_name + ":" + column_param + " should not be empty string";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (uint32_t i = 0; i < columns.size(); ++i) {
if (columns[i].empty()) {
std::string err_msg = dataset_name + ":" + column_param + "[" + std::to_string(i) + "] must not be empty";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
std::set<std::string> columns_set(columns.begin(), columns.end());
if (columns_set.size() != columns.size()) {
// others";
std::string err_msg = dataset_name + ":" + column_param + ": Every column name should not be same with others";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
/* ####################################### Derived Dataset classes ################################# */
// DERIVED DATASET CLASSES LEAF-NODE DATASETS
// (In alphabetical order)
// Constructor for AlbumNode
AlbumNode::AlbumNode(const std::string &dataset_dir, const std::string &data_schema,
const std::vector<std::string> &column_names, bool decode,
const std::shared_ptr<SamplerObj> &sampler)
: dataset_dir_(dataset_dir),
schema_path_(data_schema),
column_names_(column_names),
decode_(decode),
sampler_(sampler) {}
Status AlbumNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("AlbumNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetFilesParam("AlbumNode", {schema_path_}));
RETURN_IF_NOT_OK(ValidateDatasetSampler("AlbumNode", sampler_));
if (!column_names_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("AlbumNode", "column_names", column_names_));
}
return Status::OK();
}
// Function to build AlbumNode
std::vector<std::shared_ptr<DatasetOp>> AlbumNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->LoadSchemaFile(schema_path_, column_names_));
// Argument that is not exposed to user in the API.
std::set<std::string> extensions = {};
node_ops.push_back(std::make_shared<AlbumOp>(num_workers_, rows_per_buffer_, dataset_dir_, connector_que_size_,
decode_, extensions, std::move(schema), std::move(sampler_->Build())));
return node_ops;
}
// Constructor for CelebANode
CelebANode::CelebANode(const std::string &dataset_dir, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler, const bool &decode,
const std::set<std::string> &extensions)
: dataset_dir_(dataset_dir), usage_(usage), sampler_(sampler), decode_(decode), extensions_(extensions) {}
Status CelebANode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("CelebANode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("CelebANode", sampler_));
RETURN_IF_NOT_OK(ValidateStringValue(usage_, {"all", "train", "valid", "test"}));
return Status::OK();
}
// Function to build CelebANode
std::vector<std::shared_ptr<DatasetOp>> CelebANode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
// label is like this:0 1 0 0 1......
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("attr", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
node_ops.push_back(std::make_shared<CelebAOp>(num_workers_, rows_per_buffer_, dataset_dir_, connector_que_size_,
decode_, usage_, extensions_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
// Constructor for Cifar10Node
Cifar10Node::Cifar10Node(const std::string &dataset_dir, const std::string &usage, std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir), usage_(usage), sampler_(sampler) {}
Status Cifar10Node::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("Cifar10Node", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("Cifar10Node", sampler_));
RETURN_IF_NOT_OK(ValidateStringValue(usage_, {"train", "test", "all"}));
return Status::OK();
}
// Function to build CifarOp for Cifar10
std::vector<std::shared_ptr<DatasetOp>> Cifar10Node::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<CifarOp>(CifarOp::CifarType::kCifar10, usage_, num_workers_, rows_per_buffer_,
dataset_dir_, connector_que_size_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
// Constructor for Cifar100Node
Cifar100Node::Cifar100Node(const std::string &dataset_dir, const std::string &usage,
std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir), usage_(usage), sampler_(sampler) {}
Status Cifar100Node::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("Cifar100Node", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("Cifar100Node", sampler_));
RETURN_IF_NOT_OK(ValidateStringValue(usage_, {"train", "test", "all"}));
return Status::OK();
}
// Function to build CifarOp for Cifar100
std::vector<std::shared_ptr<DatasetOp>> Cifar100Node::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("coarse_label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("fine_label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<CifarOp>(CifarOp::CifarType::kCifar100, usage_, num_workers_, rows_per_buffer_,
dataset_dir_, connector_que_size_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
// Constructor for CLUENode
CLUENode::CLUENode(const std::vector<std::string> clue_files, std::string task, std::string usage, int64_t num_samples,
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id)
: dataset_files_(clue_files),
task_(task),
usage_(usage),
num_samples_(num_samples),
shuffle_(shuffle),
num_shards_(num_shards),
shard_id_(shard_id) {}
Status CLUENode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetFilesParam("CLUENode", dataset_files_));
std::vector<std::string> task_list = {"AFQMC", "TNEWS", "IFLYTEK", "CMNLI", "WSC", "CSL"};
std::vector<std::string> usage_list = {"train", "test", "eval"};
if (find(task_list.begin(), task_list.end(), task_) == task_list.end()) {
std::string err_msg = "task should be AFQMC, TNEWS, IFLYTEK, CMNLI, WSC or CSL.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (find(usage_list.begin(), usage_list.end(), usage_) == usage_list.end()) {
std::string err_msg = "usage should be train, test or eval.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (num_samples_ < 0) {
std::string err_msg = "CLUENode: Invalid number of samples: " + num_samples_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetShardParams("CLUENode", num_shards_, shard_id_));
return Status::OK();
}
// Function to split string based on a character delimiter
std::vector<std::string> CLUENode::split(const std::string &s, char delim) {
std::vector<std::string> res;
std::stringstream ss(s);
std::string item;
while (getline(ss, item, delim)) {
res.push_back(item);
}
return res;
}
// Function to build CLUENode
std::vector<std::shared_ptr<DatasetOp>> CLUENode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::map<std::string, std::string> key_map;
if (task_ == "AFQMC") {
if (usage_ == "train") {
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
key_map["label"] = "label";
} else if (usage_ == "test") {
key_map["id"] = "id";
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
} else if (usage_ == "eval") {
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
key_map["label"] = "label";
}
} else if (task_ == "CMNLI") {
if (usage_ == "train") {
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
key_map["label"] = "label";
} else if (usage_ == "test") {
key_map["id"] = "id";
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
} else if (usage_ == "eval") {
key_map["sentence1"] = "sentence1";
key_map["sentence2"] = "sentence2";
key_map["label"] = "label";
}
} else if (task_ == "CSL") {
if (usage_ == "train") {
key_map["id"] = "id";
key_map["abst"] = "abst";
key_map["keyword"] = "keyword";
key_map["label"] = "label";
} else if (usage_ == "test") {
key_map["id"] = "id";
key_map["abst"] = "abst";
key_map["keyword"] = "keyword";
} else if (usage_ == "eval") {
key_map["id"] = "id";
key_map["abst"] = "abst";
key_map["keyword"] = "keyword";
key_map["label"] = "label";
}
} else if (task_ == "IFLYTEK") {
if (usage_ == "train") {
key_map["label"] = "label";
key_map["label_des"] = "label_des";
key_map["sentence"] = "sentence";
} else if (usage_ == "test") {
key_map["id"] = "id";
key_map["sentence"] = "sentence";
} else if (usage_ == "eval") {
key_map["label"] = "label";
key_map["label_des"] = "label_des";
key_map["sentence"] = "sentence";
}
} else if (task_ == "TNEWS") {
if (usage_ == "train") {
key_map["label"] = "label";
key_map["label_desc"] = "label_desc";
key_map["sentence"] = "sentence";
key_map["keywords"] = "keywords";
} else if (usage_ == "test") {
key_map["id"] = "id";
key_map["sentence"] = "sentence";
key_map["keywords"] = "keywords";
} else if (usage_ == "eval") {
key_map["label"] = "label";
key_map["label_desc"] = "label_desc";
key_map["sentence"] = "sentence";
key_map["keywords"] = "keywords";
}
} else if (task_ == "WSC") {
if (usage_ == "train") {
key_map["span1_index"] = "target/span1_index";
key_map["span2_index"] = "target/span2_index";
key_map["span1_text"] = "target/span1_text";
key_map["span2_text"] = "target/span2_text";
key_map["idx"] = "idx";
key_map["label"] = "label";
key_map["text"] = "text";
} else if (usage_ == "test") {
key_map["span1_index"] = "target/span1_index";
key_map["span2_index"] = "target/span2_index";
key_map["span1_text"] = "target/span1_text";
key_map["span2_text"] = "target/span2_text";
key_map["idx"] = "idx";
key_map["text"] = "text";
} else if (usage_ == "eval") {
key_map["span1_index"] = "target/span1_index";
key_map["span2_index"] = "target/span2_index";
key_map["span1_text"] = "target/span1_text";
key_map["span2_text"] = "target/span2_text";
key_map["idx"] = "idx";
key_map["label"] = "label";
key_map["text"] = "text";
}
}
ColKeyMap ck_map;
for (auto &p : key_map) {
ck_map.insert({p.first, split(p.second, '/')});
}
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
// Sort the dataset files in a lexicographical order
std::vector<std::string> sorted_dataset_files = dataset_files_;
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
std::shared_ptr<ClueOp> clue_op =
std::make_shared<ClueOp>(num_workers_, rows_per_buffer_, num_samples_, worker_connector_size_, ck_map,
sorted_dataset_files, connector_que_size_, shuffle_files, num_shards_, shard_id_, nullptr);
RETURN_EMPTY_IF_ERROR(clue_op->Init());
if (shuffle_ == ShuffleMode::kGlobal) {
// Inject ShuffleOp
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
int64_t num_rows = 0;
// First, get the number of rows in the dataset
RETURN_EMPTY_IF_ERROR(ClueOp::CountAllFileRows(sorted_dataset_files, &num_rows));
// Add the shuffle op after this op
RETURN_EMPTY_IF_ERROR(AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_,
rows_per_buffer_, &shuffle_op));
node_ops.push_back(shuffle_op);
}
node_ops.push_back(clue_op);
return node_ops;
}
// Constructor for CocoNode
CocoNode::CocoNode(const std::string &dataset_dir, const std::string &annotation_file, const std::string &task,
const bool &decode, const std::shared_ptr<SamplerObj> &sampler)
: dataset_dir_(dataset_dir), annotation_file_(annotation_file), task_(task), decode_(decode), sampler_(sampler) {}
Status CocoNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("CocoNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("CocoNode", sampler_));
Path annotation_file(annotation_file_);
if (!annotation_file.Exists()) {
std::string err_msg = "annotation_file is invalid or not exist";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
std::set<std::string> task_list = {"Detection", "Stuff", "Panoptic", "Keypoint"};
auto task_iter = task_list.find(task_);
if (task_iter == task_list.end()) {
std::string err_msg = "Invalid task type";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Function to build CocoNode
std::vector<std::shared_ptr<DatasetOp>> CocoNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
CocoOp::TaskType task_type;
if (task_ == "Detection") {
task_type = CocoOp::TaskType::Detection;
} else if (task_ == "Stuff") {
task_type = CocoOp::TaskType::Stuff;
} else if (task_ == "Keypoint") {
task_type = CocoOp::TaskType::Keypoint;
} else if (task_ == "Panoptic") {
task_type = CocoOp::TaskType::Panoptic;
}
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor(std::string("image"), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
switch (task_type) {
case CocoOp::TaskType::Detection:
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("bbox"), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("category_id"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("iscrowd"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
break;
case CocoOp::TaskType::Stuff:
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("segmentation"), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("iscrowd"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
break;
case CocoOp::TaskType::Keypoint:
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("keypoints"), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("num_keypoints"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
break;
case CocoOp::TaskType::Panoptic:
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("bbox"), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("category_id"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string("iscrowd"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor(std::string("area"), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
break;
default:
MS_LOG(ERROR) << "CocoNode::Build : Invalid task type: " << task_type;
return {};
}
std::shared_ptr<CocoOp> op =
std::make_shared<CocoOp>(task_type, dataset_dir_, annotation_file_, num_workers_, rows_per_buffer_,
connector_que_size_, decode_, std::move(schema), std::move(sampler_->Build()));
node_ops.push_back(op);
return node_ops;
}
// Constructor for CSVNode
CSVNode::CSVNode(const std::vector<std::string> &csv_files, char field_delim,
const std::vector<std::shared_ptr<CsvBase>> &column_defaults,
const std::vector<std::string> &column_names, int64_t num_samples, ShuffleMode shuffle,
int32_t num_shards, int32_t shard_id)
: dataset_files_(csv_files),
field_delim_(field_delim),
column_defaults_(column_defaults),
column_names_(column_names),
num_samples_(num_samples),
shuffle_(shuffle),
num_shards_(num_shards),
shard_id_(shard_id) {}
Status CSVNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetFilesParam("CSVNode", dataset_files_));
if (field_delim_ == '"' || field_delim_ == '\r' || field_delim_ == '\n') {
std::string err_msg = "CSVNode: The field delimiter should not be \", \\r, \\n";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (num_samples_ < 0) {
std::string err_msg = "CSVNode: Invalid number of samples: " + num_samples_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetShardParams("CSVNode", num_shards_, shard_id_));
if (find(column_defaults_.begin(), column_defaults_.end(), nullptr) != column_defaults_.end()) {
std::string err_msg = "CSVNode: column_default should not be null.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!column_names_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("CSVNode", "column_names", column_names_));
}
return Status::OK();
}
// Function to build CSVNode
std::vector<std::shared_ptr<DatasetOp>> CSVNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
// Sort the dataset files in a lexicographical order
std::vector<std::string> sorted_dataset_files = dataset_files_;
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
std::vector<std::shared_ptr<CsvOp::BaseRecord>> column_default_list;
for (auto v : column_defaults_) {
if (v->type == CsvType::INT) {
column_default_list.push_back(
std::make_shared<CsvOp::Record<int>>(CsvOp::INT, std::dynamic_pointer_cast<CsvRecord<int>>(v)->value));
} else if (v->type == CsvType::FLOAT) {
column_default_list.push_back(
std::make_shared<CsvOp::Record<float>>(CsvOp::FLOAT, std::dynamic_pointer_cast<CsvRecord<float>>(v)->value));
} else if (v->type == CsvType::STRING) {
column_default_list.push_back(std::make_shared<CsvOp::Record<std::string>>(
CsvOp::STRING, std::dynamic_pointer_cast<CsvRecord<std::string>>(v)->value));
}
}
std::shared_ptr<CsvOp> csv_op = std::make_shared<CsvOp>(
sorted_dataset_files, field_delim_, column_default_list, column_names_, num_workers_, rows_per_buffer_,
num_samples_, worker_connector_size_, connector_que_size_, shuffle_files, num_shards_, shard_id_, nullptr);
RETURN_EMPTY_IF_ERROR(csv_op->Init());
if (shuffle_ == ShuffleMode::kGlobal) {
// Inject ShuffleOp
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
int64_t num_rows = 0;
// First, get the number of rows in the dataset
RETURN_EMPTY_IF_ERROR(CsvOp::CountAllFileRows(sorted_dataset_files, column_names_.empty(), &num_rows));
// Add the shuffle op after this op
RETURN_EMPTY_IF_ERROR(AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_,
rows_per_buffer_, &shuffle_op));
node_ops.push_back(shuffle_op);
}
node_ops.push_back(csv_op);
return node_ops;
}
ImageFolderNode::ImageFolderNode(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler,
bool recursive, std::set<std::string> extensions,
std::map<std::string, int32_t> class_indexing)
: dataset_dir_(dataset_dir),
decode_(decode),
sampler_(sampler),
recursive_(recursive),
class_indexing_(class_indexing),
exts_(extensions) {}
Status ImageFolderNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("ImageFolderNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("ImageFolderNode", sampler_));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ImageFolderNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
// This arg is exist in ImageFolderOp, but not externalized (in Python API).
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_INT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<ImageFolderOp>(num_workers_, rows_per_buffer_, dataset_dir_, connector_que_size_,
recursive_, decode_, exts_, class_indexing_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
#ifndef ENABLE_ANDROID
ManifestNode::ManifestNode(const std::string &dataset_file, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
const std::map<std::string, int32_t> &class_indexing, bool decode)
: dataset_file_(dataset_file), usage_(usage), decode_(decode), class_index_(class_indexing), sampler_(sampler) {}
Status ManifestNode::ValidateParams() {
std::vector<char> forbidden_symbols = {':', '*', '?', '"', '<', '>', '|', '`', '&', '\'', ';'};
for (char c : dataset_file_) {
auto p = std::find(forbidden_symbols.begin(), forbidden_symbols.end(), c);
if (p != forbidden_symbols.end()) {
std::string err_msg = "filename should not contains :*?\"<>|`&;\'";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
Path manifest_file(dataset_file_);
if (!manifest_file.Exists()) {
std::string err_msg = "dataset file: [" + dataset_file_ + "] is invalid or not exist";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetSampler("ManifestNode", sampler_));
std::vector<std::string> usage_list = {"train", "eval", "inference"};
if (find(usage_list.begin(), usage_list.end(), usage_) == usage_list.end()) {
std::string err_msg = "usage should be train, eval or inference.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ManifestNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
std::shared_ptr<ManifestOp> manifest_op;
manifest_op =
std::make_shared<ManifestOp>(num_workers_, rows_per_buffer_, dataset_file_, connector_que_size_, decode_,
class_index_, std::move(schema), std::move(sampler_->Build()), usage_);
node_ops.push_back(manifest_op);
return node_ops;
}
#endif
#ifndef ENABLE_ANDROID
MindDataNode::MindDataNode(const std::vector<std::string> &dataset_files, const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample, int64_t num_padded)
: dataset_file_(std::string()),
dataset_files_(dataset_files),
search_for_pattern_(false),
columns_list_(columns_list),
sampler_(sampler),
padded_sample_(padded_sample),
sample_bytes_({}),
num_padded_(num_padded) {}
MindDataNode::MindDataNode(const std::string &dataset_file, const std::vector<std::string> &columns_list,
const std::shared_ptr<SamplerObj> &sampler, nlohmann::json padded_sample, int64_t num_padded)
: dataset_file_(dataset_file),
dataset_files_({}),
search_for_pattern_(true),
columns_list_(columns_list),
sampler_(sampler),
padded_sample_(padded_sample),
sample_bytes_({}),
num_padded_(num_padded) {}
Status MindDataNode::ValidateParams() {
if (!search_for_pattern_ && dataset_files_.size() > 4096) {
std::string err_msg =
"MindDataNode: length of dataset_file must be less than or equal to 4096, dataset_file length: " +
std::to_string(dataset_file_.size());
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
std::vector<std::string> dataset_file_vec =
search_for_pattern_ ? std::vector<std::string>{dataset_file_} : dataset_files_;
RETURN_IF_NOT_OK(ValidateDatasetFilesParam("MindDataNode", dataset_file_vec));
RETURN_IF_NOT_OK(ValidateDatasetSampler("MindDataNode", sampler_));
if (!columns_list_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("MindDataNode", "columns_list", columns_list_));
}
if (padded_sample_ != nullptr) {
if (num_padded_ < 0) {
std::string err_msg =
"MindDataNode: num_padded must be greater than or equal to zero, num_padded: " + std::to_string(num_padded_);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (columns_list_.empty()) {
std::string err_msg = "MindDataNode: padded_sample is specified and requires columns_list as well";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (std::string &column : columns_list_) {
if (padded_sample_.find(column) == padded_sample_.end()) {
std::string err_msg = "MindDataNode: " + column + " in columns_list does not match any column in padded_sample";
MS_LOG(ERROR) << err_msg << ", padded_sample: " << padded_sample_;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
}
if (num_padded_ > 0) {
if (padded_sample_ == nullptr) {
std::string err_msg = "MindDataNode: num_padded is specified but padded_sample is not";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
return Status::OK();
}
// Helper function to create runtime sampler for minddata dataset
Status MindDataNode::BuildMindDatasetSamplerChain(const std::shared_ptr<SamplerObj> &sampler,
std::vector<std::shared_ptr<mindrecord::ShardOperator>> *operators_,
int64_t num_padded) {
std::shared_ptr<mindrecord::ShardOperator> op = sampler->BuildForMindDataset();
if (op == nullptr) {
std::string err_msg =
"MindDataNode: Unsupported sampler is supplied for MindDataset. Supported sampler list: "
"SubsetRandomSampler, PkSampler, RandomSampler, SequentialSampler and DistributedSampler";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
std::stack<std::shared_ptr<mindrecord::ShardOperator>> stack_ops;
while (op != nullptr) {
auto sampler_op = std::dynamic_pointer_cast<mindrecord::ShardDistributedSample>(op);
if (sampler_op && num_padded > 0) {
sampler_op->SetNumPaddedSamples(num_padded);
stack_ops.push(sampler_op);
} else {
stack_ops.push(op);
}
op = op->GetChildOp();
}
while (!stack_ops.empty()) {
operators_->push_back(stack_ops.top());
stack_ops.pop();
}
return Status::OK();
}
// Helper function to set sample_bytes from py::byte type
void MindDataNode::SetSampleBytes(std::map<std::string, std::string> *sample_bytes) { sample_bytes_ = *sample_bytes; }
std::vector<std::shared_ptr<DatasetOp>> MindDataNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::vector<std::shared_ptr<ShardOperator>> operators_;
RETURN_EMPTY_IF_ERROR(BuildMindDatasetSamplerChain(sampler_, &operators_, num_padded_));
std::shared_ptr<MindRecordOp> mindrecord_op;
// If pass a string to MindData(), it will be treated as a pattern to search for matched files,
// else if pass a vector to MindData(), it will be treated as specified files to be read
if (search_for_pattern_) {
std::vector<std::string> dataset_file_vec_ = {dataset_file_};
mindrecord_op = std::make_shared<MindRecordOp>(num_workers_, rows_per_buffer_, dataset_file_vec_,
search_for_pattern_, connector_que_size_, columns_list_, operators_,
num_padded_, padded_sample_, sample_bytes_);
} else {
mindrecord_op = std::make_shared<MindRecordOp>(num_workers_, rows_per_buffer_, dataset_files_, search_for_pattern_,
connector_que_size_, columns_list_, operators_, num_padded_,
padded_sample_, sample_bytes_);
}
RETURN_EMPTY_IF_ERROR(mindrecord_op->Init());
node_ops.push_back(mindrecord_op);
return node_ops;
}
#endif
MnistNode::MnistNode(std::string dataset_dir, std::string usage, std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir), usage_(usage), sampler_(sampler) {}
Status MnistNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("MnistNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("MnistNode", sampler_));
RETURN_IF_NOT_OK(ValidateStringValue(usage_, {"train", "test", "all"}));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> MnistNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<MnistOp>(usage_, num_workers_, rows_per_buffer_, dataset_dir_,
connector_que_size_, std::move(schema), std::move(sampler_->Build())));
return node_ops;
}
// ValideParams for RandomNode
Status RandomNode::ValidateParams() {
if (total_rows_ < 0) {
std::string err_msg = "RandomNode: total_rows must be greater than or equal 0, now get " + total_rows_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetSampler("RandomNode", sampler_));
if (!columns_list_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("RandomNode", "columns_list", columns_list_));
}
return Status::OK();
}
int32_t RandomNode::GenRandomInt(int32_t min, int32_t max) {
std::uniform_int_distribution<int32_t> uniDist(min, max);
return uniDist(rand_gen_);
}
// Build for RandomNode
std::vector<std::shared_ptr<DatasetOp>> RandomNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
rand_gen_.seed(GetSeed()); // seed the random generator
// If total rows was not given, then randomly pick a number
std::shared_ptr<SchemaObj> schema_obj;
if (!schema_path_.empty()) {
schema_obj = Schema(schema_path_);
if (schema_obj == nullptr) {
return {};
}
}
std::string schema_json_string, schema_file_path;
if (schema_ != nullptr) {
schema_->set_dataset_type("Random");
if (total_rows_ != 0) {
schema_->set_num_rows(total_rows_);
}
schema_json_string = schema_->to_json();
} else {
schema_file_path = schema_path_;
}
std::unique_ptr<DataSchema> data_schema;
std::vector<std::string> columns_to_load;
if (columns_list_.size() > 0) {
columns_to_load = columns_list_;
}
if (!schema_file_path.empty() || !schema_json_string.empty()) {
data_schema = std::make_unique<DataSchema>();
if (!schema_file_path.empty()) {
data_schema->LoadSchemaFile(schema_file_path, columns_to_load);
} else if (!schema_json_string.empty()) {
data_schema->LoadSchemaString(schema_json_string, columns_to_load);
}
}
std::shared_ptr<RandomDataOp> op;
op = std::make_shared<RandomDataOp>(num_workers_, connector_que_size_, rows_per_buffer_, total_rows_,
std::move(data_schema), std::move(sampler_->Build()));
node_ops.push_back(op);
return node_ops;
}
// Constructor for TextFileNode
TextFileNode::TextFileNode(std::vector<std::string> dataset_files, int32_t num_samples, ShuffleMode shuffle,
int32_t num_shards, int32_t shard_id)
: dataset_files_(dataset_files),
num_samples_(num_samples),
shuffle_(shuffle),
num_shards_(num_shards),
shard_id_(shard_id) {}
Status TextFileNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetFilesParam("TextFileNode", dataset_files_));
if (num_samples_ < 0) {
std::string err_msg = "TextFileNode: Invalid number of samples: " + num_samples_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetShardParams("TextFileNode", num_shards_, shard_id_));
return Status::OK();
}
// Function to build TextFileNode
std::vector<std::shared_ptr<DatasetOp>> TextFileNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
// Sort the dataset files in a lexicographical order
std::vector<std::string> sorted_dataset_files = dataset_files_;
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("text", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
// Create and initalize TextFileOp
std::shared_ptr<TextFileOp> text_file_op = std::make_shared<TextFileOp>(
num_workers_, rows_per_buffer_, num_samples_, worker_connector_size_, std::move(schema), sorted_dataset_files,
connector_que_size_, shuffle_files, num_shards_, shard_id_, nullptr);
RETURN_EMPTY_IF_ERROR(text_file_op->Init());
if (shuffle_ == ShuffleMode::kGlobal) {
// Inject ShuffleOp
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
int64_t num_rows = 0;
// First, get the number of rows in the dataset
RETURN_EMPTY_IF_ERROR(TextFileOp::CountAllFileRows(sorted_dataset_files, &num_rows));
// Add the shuffle op after this op
RETURN_EMPTY_IF_ERROR(AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_,
rows_per_buffer_, &shuffle_op));
node_ops.push_back(shuffle_op);
}
// Add TextFileOp
node_ops.push_back(text_file_op);
return node_ops;
}
#ifndef ENABLE_ANDROID
// Validator for TFRecordNode
Status TFRecordNode::ValidateParams() { return Status::OK(); }
// Function to build TFRecordNode
std::vector<std::shared_ptr<DatasetOp>> TFRecordNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Sort the datasets file in a lexicographical order
std::vector<std::string> sorted_dir_files = dataset_files_;
std::sort(sorted_dir_files.begin(), sorted_dir_files.end());
// Create Schema Object
std::unique_ptr<DataSchema> data_schema = std::make_unique<DataSchema>();
if (!schema_path_.empty()) {
RETURN_EMPTY_IF_ERROR(data_schema->LoadSchemaFile(schema_path_, columns_list_));
} else if (schema_obj_ != nullptr) {
std::string schema_json_string = schema_obj_->to_json();
RETURN_EMPTY_IF_ERROR(data_schema->LoadSchemaString(schema_json_string, columns_list_));
}
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
// Create and initialize TFReaderOp
std::shared_ptr<TFReaderOp> tf_reader_op = std::make_shared<TFReaderOp>(
num_workers_, worker_connector_size_, rows_per_buffer_, num_samples_, sorted_dir_files, std::move(data_schema),
connector_que_size_, columns_list_, shuffle_files, num_shards_, shard_id_, shard_equal_rows_, nullptr);
RETURN_EMPTY_IF_ERROR(tf_reader_op->Init());
if (shuffle_ == ShuffleMode::kGlobal) {
// Inject ShuffleOp
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
int64_t num_rows = 0;
// First, get the number of rows in the dataset
RETURN_EMPTY_IF_ERROR(TFReaderOp::CountTotalRows(&num_rows, sorted_dir_files));
// Add the shuffle op after this op
RETURN_EMPTY_IF_ERROR(AddShuffleOp(sorted_dir_files.size(), num_shards_, num_rows, 0, connector_que_size_,
rows_per_buffer_, &shuffle_op));
node_ops.push_back(shuffle_op);
}
// Add TFReaderOp
node_ops.push_back(tf_reader_op);
return node_ops;
}
// Constructor for VOCNode
VOCNode::VOCNode(const std::string &dataset_dir, const std::string &task, const std::string &usage,
const std::map<std::string, int32_t> &class_indexing, bool decode, std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir),
task_(task),
usage_(usage),
class_index_(class_indexing),
decode_(decode),
sampler_(sampler) {}
Status VOCNode::ValidateParams() {
Path dir(dataset_dir_);
if (!dir.IsDirectory()) {
std::string err_msg = "Invalid dataset path or no dataset path is specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetSampler("VOCNode", sampler_));
if (task_ == "Segmentation") {
if (!class_index_.empty()) {
std::string err_msg = "class_indexing is invalid in Segmentation task.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
Path imagesets_file = dir / "ImageSets" / "Segmentation" / usage_ + ".txt";
if (!imagesets_file.Exists()) {
std::string err_msg = "Invalid usage: " + usage_ + ", file does not exist";
MS_LOG(ERROR) << "Invalid usage: " << usage_ << ", file \"" << imagesets_file << "\" does not exist!";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
} else if (task_ == "Detection") {
Path imagesets_file = dir / "ImageSets" / "Main" / usage_ + ".txt";
if (!imagesets_file.Exists()) {
std::string err_msg = "Invalid usage: " + usage_ + ", file does not exist";
MS_LOG(ERROR) << "Invalid usage: " << usage_ << ", file \"" << imagesets_file << "\" does not exist!";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
} else {
std::string err_msg = "Invalid task: " + task_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Function to build VOCNode
std::vector<std::shared_ptr<DatasetOp>> VOCNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
auto schema = std::make_unique<DataSchema>();
VOCOp::TaskType task_type_;
if (task_ == "Segmentation") {
task_type_ = VOCOp::TaskType::Segmentation;
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnTarget), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
} else if (task_ == "Detection") {
task_type_ = VOCOp::TaskType::Detection;
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnBbox), DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnLabel), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnDifficult), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(schema->AddColumn(
ColDescriptor(std::string(kColumnTruncate), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
}
std::shared_ptr<VOCOp> voc_op;
voc_op = std::make_shared<VOCOp>(task_type_, usage_, dataset_dir_, class_index_, num_workers_, rows_per_buffer_,
connector_que_size_, decode_, std::move(schema), std::move(sampler_->Build()));
node_ops.push_back(voc_op);
return node_ops;
}
#endif
// DERIVED DATASET CLASSES LEAF-NODE DATASETS
// (In alphabetical order)
BatchNode::BatchNode(std::shared_ptr<Dataset> child, int32_t batch_size, bool drop_remainder, bool pad,
std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map)
: batch_size_(batch_size),
drop_remainder_(drop_remainder),
pad_(pad),
cols_to_map_(cols_to_map),
pad_map_(pad_map) {
this->children.push_back(child);
}
std::vector<std::shared_ptr<DatasetOp>> BatchNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
#ifdef ENABLE_PYTHON
py::function noop;
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, cols_to_map_, noop, noop, pad_map_));
#else
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, pad_map_));
#endif
// Until py::function is implemented for C++ API, there is no need for a project op to be inserted after batch
// because project is only needed when batch op performs per_batch_map. This per_batch_map is a pyfunc
return node_ops;
}
Status BatchNode::ValidateParams() {
if (batch_size_ <= 0) {
std::string err_msg = "Batch: batch_size should be positive integer, but got: " + batch_size_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!cols_to_map_.empty()) {
std::string err_msg = "cols_to_map functionality is not implemented in C++; this should be left empty.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
#ifndef ENABLE_ANDROID
BucketBatchByLengthNode::BucketBatchByLengthNode(
std::shared_ptr<Dataset> child, const std::vector<std::string> &column_names,
const std::vector<int32_t> &bucket_boundaries, const std::vector<int32_t> &bucket_batch_sizes,
std::function<TensorRow(TensorRow)> element_length_function,
const std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> &pad_info, bool pad_to_bucket_boundary,
bool drop_remainder)
: column_names_(column_names),
bucket_boundaries_(bucket_boundaries),
bucket_batch_sizes_(bucket_batch_sizes),
element_length_function_(element_length_function),
pad_info_(pad_info),
pad_to_bucket_boundary_(pad_to_bucket_boundary),
drop_remainder_(drop_remainder) {
this->children.push_back(child);
}
std::vector<std::shared_ptr<DatasetOp>> BucketBatchByLengthNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::shared_ptr<TensorOp> c_func;
if (element_length_function_ != nullptr) {
c_func = std::make_shared<CFuncOp>(element_length_function_);
} else {
c_func = nullptr;
}
node_ops.push_back(std::make_shared<BucketBatchByLengthOp>(column_names_, bucket_boundaries_, bucket_batch_sizes_,
c_func, pad_info_, pad_to_bucket_boundary_,
drop_remainder_, connector_que_size_));
return node_ops;
}
Status BucketBatchByLengthNode::ValidateParams() {
if (element_length_function_ == nullptr && column_names_.size() != 1) {
std::string err_msg =
"BucketBatchByLength: element_length_function not specified, but not one column name: " + column_names_.size();
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
// Check bucket_boundaries: must be positive and strictly increasing
if (bucket_boundaries_.empty()) {
std::string err_msg = "BucketBatchByLength: bucket_boundaries cannot be empty.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (int i = 0; i < bucket_boundaries_.size(); i++) {
if (bucket_boundaries_[i] <= 0) {
std::string err_msg = "BucketBatchByLength: Invalid non-positive bucket_boundaries, index: ";
MS_LOG(ERROR)
<< "BucketBatchByLength: bucket_boundaries must only contain positive numbers. However, the element at index: "
<< i << " was: " << bucket_boundaries_[i];
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (i > 0 && bucket_boundaries_[i - 1] >= bucket_boundaries_[i]) {
std::string err_msg = "BucketBatchByLength: Invalid bucket_boundaries not be strictly increasing.";
MS_LOG(ERROR)
<< "BucketBatchByLength: bucket_boundaries must be strictly increasing. However, the elements at index: "
<< i - 1 << " and " << i << " were: " << bucket_boundaries_[i - 1] << " and " << bucket_boundaries_[i]
<< " respectively.";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
// Check bucket_batch_sizes: must be positive
if (bucket_batch_sizes_.empty()) {
std::string err_msg = "BucketBatchByLength: bucket_batch_sizes must be non-empty";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (bucket_batch_sizes_.size() != bucket_boundaries_.size() + 1) {
std::string err_msg = "BucketBatchByLength: bucket_batch_sizes's size must equal the size of bucket_boundaries + 1";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (std::any_of(bucket_batch_sizes_.begin(), bucket_batch_sizes_.end(), [](int i) { return i <= 0; })) {
std::string err_msg = "BucketBatchByLength: bucket_batch_sizes must only contain positive numbers.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
BuildVocabNode::BuildVocabNode(std::shared_ptr<Dataset> child, std::shared_ptr<Vocab> vocab,
const std::vector<std::string> &columns, const std::pair<int64_t, int64_t> &freq_range,
int64_t top_k, const std::vector<std::string> &special_tokens, bool special_first)
: vocab_(vocab),
columns_(columns),
freq_range_(freq_range),
top_k_(top_k),
special_tokens_(special_tokens),
special_first_(special_first) {
this->children.push_back(child);
}
// Function to build BuildVocabNode
std::vector<std::shared_ptr<DatasetOp>> BuildVocabNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::shared_ptr<BuildVocabOp> build_vocab_op;
build_vocab_op = std::make_shared<BuildVocabOp>(vocab_, columns_, freq_range_, top_k_, special_tokens_,
special_first_, num_workers_, connector_que_size_);
node_ops.push_back(build_vocab_op);
return node_ops;
}
Status BuildVocabNode::ValidateParams() {
if (vocab_ == nullptr) {
std::string err_msg = "BuildVocab: vocab is null.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (top_k_ <= 0) {
std::string err_msg = "BuildVocab: top_k should be positive, but got: " + top_k_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (freq_range_.first < 0 || freq_range_.second > kDeMaxFreq || freq_range_.first > freq_range_.second) {
std::string err_msg = "BuildVocab: frequency_range [a,b] violates 0 <= a <= b (a,b are inclusive)";
MS_LOG(ERROR) << "BuildVocab: frequency_range [a,b] should be 0 <= a <= b (a,b are inclusive), "
<< "but got [" << freq_range_.first << ", " << freq_range_.second << "]";
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!columns_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("BuildVocab", "columns", columns_));
}
return Status::OK();
}
#endif
// Function to build ConcatOp
ConcatNode::ConcatNode(const std::vector<std::shared_ptr<Dataset>> &datasets) : datasets_(datasets) {
this->children = datasets_;
}
Status ConcatNode::ValidateParams() {
if (datasets_.empty()) {
std::string err_msg = "Concat: concatenated datasets are not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (find(datasets_.begin(), datasets_.end(), nullptr) != datasets_.end()) {
std::string err_msg = "Concat: concatenated datasets should not be null.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ConcatNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ConcatOp>(connector_que_size_));
return node_ops;
}
MapNode::MapNode(std::shared_ptr<Dataset> child, std::vector<std::shared_ptr<TensorOperation>> operations,
std::vector<std::string> input_columns, std::vector<std::string> output_columns,
const std::vector<std::string> &project_columns)
: operations_(operations),
input_columns_(input_columns),
output_columns_(output_columns),
project_columns_(project_columns) {
this->children.push_back(child);
}
std::vector<std::shared_ptr<DatasetOp>> MapNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
std::vector<std::shared_ptr<TensorOp>> tensor_ops;
// Build tensorOp from tensorOperation vector
// This is to ensure each iterator hold its own copy of the tensorOp objects.
(void)std::transform(
operations_.begin(), operations_.end(), std::back_inserter(tensor_ops),
[](std::shared_ptr<TensorOperation> operation) -> std::shared_ptr<TensorOp> { return operation->Build(); });
// This parameter will be removed with next rebase
std::vector<std::string> col_orders;
auto map_op = std::make_shared<MapOp>(input_columns_, output_columns_, tensor_ops, num_workers_, connector_que_size_);
if (!project_columns_.empty()) {
auto project_op = std::make_shared<ProjectOp>(project_columns_);
node_ops.push_back(project_op);
}
node_ops.push_back(map_op);
return node_ops;
}
Status MapNode::ValidateParams() {
if (operations_.empty()) {
std::string err_msg = "Map: No operation is specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!input_columns_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("MapNode", "input_columns", input_columns_));
}
if (!output_columns_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("MapNode", "output_columns", output_columns_));
}
if (!project_columns_.empty()) {
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("MapNode", "project_columns", project_columns_));
}
return Status::OK();
}
// Function to build ProjectOp
ProjectNode::ProjectNode(std::shared_ptr<Dataset> child, const std::vector<std::string> &columns) : columns_(columns) {
this->children.push_back(child);
}
Status ProjectNode::ValidateParams() {
if (columns_.empty()) {
std::string err_msg = "ProjectNode: No columns are specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("ProjectNode", "columns", columns_));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ProjectNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ProjectOp>(columns_));
return node_ops;
}
// Function to build RenameOp
RenameNode::RenameNode(std::shared_ptr<Dataset> child, const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns)
: input_columns_(input_columns), output_columns_(output_columns) {
this->children.push_back(child);
}
Status RenameNode::ValidateParams() {
if (input_columns_.size() != output_columns_.size()) {
std::string err_msg = "RenameNode: input and output columns must be the same size";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("RenameNode", "input_columns", input_columns_));
RETURN_IF_NOT_OK(ValidateDatasetColumnParam("RenameNode", "output_columns", output_columns_));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> RenameNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RenameOp>(input_columns_, output_columns_, connector_que_size_));
return node_ops;
}
RepeatNode::RepeatNode(std::shared_ptr<Dataset> child, int32_t count) : repeat_count_(count) {
this->children.push_back(child);
}
std::vector<std::shared_ptr<DatasetOp>> RepeatNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RepeatOp>(repeat_count_));
return node_ops;
}
Status RepeatNode::ValidateParams() {
if (repeat_count_ <= 0 && repeat_count_ != -1) {
std::string err_msg =
"Repeat: repeat_count should be either -1 or positive integer, repeat_count_: " + repeat_count_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Constructor for ShuffleNode
ShuffleNode::ShuffleNode(std::shared_ptr<Dataset> child, int32_t shuffle_size, bool reset_every_epoch)
: shuffle_size_(shuffle_size), shuffle_seed_(GetSeed()), reset_every_epoch_(reset_every_epoch) {
this->children.push_back(child);
}
// Function to build the ShuffleOp
std::vector<std::shared_ptr<DatasetOp>> ShuffleNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ShuffleOp>(shuffle_size_, shuffle_seed_, connector_que_size_, reset_every_epoch_,
rows_per_buffer_));
return node_ops;
}
// Function to validate the parameters for ShuffleNode
Status ShuffleNode::ValidateParams() {
if (shuffle_size_ <= 1) {
std::string err_msg = "ShuffleNode: Invalid input, shuffle_size: " + shuffle_size_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Constructor for SkipNode
SkipNode::SkipNode(std::shared_ptr<Dataset> child, int32_t count) : skip_count_(count) {
this->children.push_back(child);
}
// Function to build the SkipOp
std::vector<std::shared_ptr<DatasetOp>> SkipNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<SkipOp>(skip_count_, connector_que_size_));
return node_ops;
}
// Function to validate the parameters for SkipNode
Status SkipNode::ValidateParams() {
if (skip_count_ <= -1) {
std::string err_msg = "Skip: skip_count should not be negative, skip_count: " + skip_count_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Constructor for TakeNode
TakeNode::TakeNode(std::shared_ptr<Dataset> child, int32_t count) : take_count_(count) {
this->children.push_back(child);
}
// Function to build the TakeOp
std::vector<std::shared_ptr<DatasetOp>> TakeNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<TakeOp>(take_count_, connector_que_size_));
return node_ops;
}
// Function to validate the parameters for TakeNode
Status TakeNode::ValidateParams() {
if (take_count_ <= 0 && take_count_ != -1) {
std::string err_msg = "Take: take_count should be either -1 or positive integer, take_count: " + take_count_;
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
// Function to build ZipOp
ZipNode::ZipNode(const std::vector<std::shared_ptr<Dataset>> &datasets) : datasets_(datasets) {
for (auto dataset : datasets_) {
this->children.push_back(dataset);
}
}
Status ZipNode::ValidateParams() {
if (datasets_.empty()) {
std::string err_msg = "Zip: datasets to zip are not specified.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (find(datasets_.begin(), datasets_.end(), nullptr) != datasets_.end()) {
std::string err_msg = "ZipNode: zip datasets should not be null.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ZipNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ZipOp>(rows_per_buffer_, connector_que_size_));
return node_ops;
}
} // namespace api
} // namespace dataset
} // namespace mindspore