You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.9 KiB
71 lines
2.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""train_criteo."""
|
|
import os
|
|
import sys
|
|
import time
|
|
import argparse
|
|
|
|
from mindspore import context
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from src.deepfm import ModelBuilder, AUCMetric
|
|
from src.config import DataConfig, ModelConfig, TrainConfig
|
|
from src.dataset import create_dataset, DataType
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
parser = argparse.ArgumentParser(description='CTR Prediction')
|
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
|
|
help="device target, support Ascend, GPU and CPU.")
|
|
args_opt, _ = parser.parse_known_args()
|
|
device_id = int(os.getenv('DEVICE_ID', '0'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
|
|
|
|
|
|
def add_write(file_path, print_str):
|
|
with open(file_path, 'a+', encoding='utf-8') as file_out:
|
|
file_out.write(print_str + '\n')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
data_config = DataConfig()
|
|
model_config = ModelConfig()
|
|
train_config = TrainConfig()
|
|
|
|
ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
|
|
epochs=1, batch_size=train_config.batch_size,
|
|
data_type=DataType(data_config.data_format))
|
|
if model_config.convert_dtype:
|
|
model_config.convert_dtype = args_opt.device_target != "CPU"
|
|
model_builder = ModelBuilder(model_config, train_config)
|
|
train_net, eval_net = model_builder.get_train_eval_net()
|
|
train_net.set_train()
|
|
eval_net.set_train(False)
|
|
auc_metric = AUCMetric()
|
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
|
load_param_into_net(eval_net, param_dict)
|
|
|
|
start = time.time()
|
|
res = model.eval(ds_eval)
|
|
eval_time = time.time() - start
|
|
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
|
out_str = f'{time_str} AUC: {list(res.values())[0]}, eval time: {eval_time}s.'
|
|
print(out_str)
|
|
add_write('./auc.log', str(out_str))
|