You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/recommend/deepfm/train.py

130 lines
6.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_criteo."""
import os
import sys
import argparse
from mindspore import context
from mindspore.context import ParallelMode
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.model import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.common import set_seed
from src.deepfm import ModelBuilder, AUCMetric
from src.config import DataConfig, ModelConfig, TrainConfig
from src.dataset import create_dataset, DataType
from src.callback import EvalCallBack, LossCallBack
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
parser = argparse.ArgumentParser(description='CTR Prediction')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--ckpt_path', type=str, default=None, help='Checkpoint path')
parser.add_argument('--eval_file_name', type=str, default="./auc.log",
help='Auc log file path. Default: "./auc.log"')
parser.add_argument('--loss_file_name', type=str, default="./loss.log",
help='Loss log file path. Default: "./loss.log"')
parser.add_argument('--do_eval', type=str, default='True',
help='Do evaluation or not, only support "True" or "False". Default: "True"')
parser.add_argument('--device_target', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
help="device target, support Ascend, GPU and CPU.")
args_opt, _ = parser.parse_known_args()
args_opt.do_eval = args_opt.do_eval == 'True'
rank_size = int(os.environ.get("RANK_SIZE", 1))
set_seed(1)
if __name__ == '__main__':
data_config = DataConfig()
model_config = ModelConfig()
train_config = TrainConfig()
if rank_size > 1:
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True,
all_reduce_fusion_config=[9, 11])
init()
rank_id = int(os.environ.get('RANK_ID'))
elif args_opt.device_target == "GPU":
init()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=get_group_size(),
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
rank_id = get_rank()
else:
print("Unsupported device_target ", args_opt.device_target)
exit()
else:
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
else:
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
rank_size = None
rank_id = None
ds_train = create_dataset(args_opt.dataset_path,
train_mode=True,
epochs=1,
batch_size=train_config.batch_size,
data_type=DataType(data_config.data_format),
rank_size=rank_size,
rank_id=rank_id)
steps_size = ds_train.get_dataset_size()
if model_config.convert_dtype:
model_config.convert_dtype = args_opt.device_target != "CPU"
model_builder = ModelBuilder(model_config, train_config)
train_net, eval_net = model_builder.get_train_eval_net()
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
time_callback = TimeMonitor(data_size=ds_train.get_dataset_size())
loss_callback = LossCallBack(loss_file_path=args_opt.loss_file_name)
callback_list = [time_callback, loss_callback]
if train_config.save_checkpoint:
if rank_size:
train_config.ckpt_file_name_prefix = train_config.ckpt_file_name_prefix + str(get_rank())
args_opt.ckpt_path = os.path.join(args_opt.ckpt_path, 'ckpt_' + str(get_rank()) + '/')
if args_opt.device_target != "Ascend":
config_ck = CheckpointConfig(save_checkpoint_steps=steps_size,
keep_checkpoint_max=train_config.keep_checkpoint_max)
else:
config_ck = CheckpointConfig(save_checkpoint_steps=train_config.save_checkpoint_steps,
keep_checkpoint_max=train_config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix=train_config.ckpt_file_name_prefix,
directory=args_opt.ckpt_path,
config=config_ck)
callback_list.append(ckpt_cb)
if args_opt.do_eval:
ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
epochs=1,
batch_size=train_config.batch_size,
data_type=DataType(data_config.data_format))
eval_callback = EvalCallBack(model, ds_eval, auc_metric,
eval_file_path=args_opt.eval_file_name)
callback_list.append(eval_callback)
model.train(train_config.train_epochs, ds_train, callbacks=callback_list)