You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/audio/wavenet/train.py

138 lines
6.3 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_criteo."""
import os
from os.path import join
import json
import argparse
from warnings import warn
from hparams import hparams, hparams_debug_string
from mindspore import context, Tensor
from mindspore.context import ParallelMode
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Adam
from mindspore.nn import TrainOneStepCell
from mindspore.train import Model
from src.lr_generator import get_lr
from src.dataset import get_data_loaders
from src.loss import NetWithLossClass
from src.callback import Monitor
from wavenet_vocoder import WaveNet
from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input
parser = argparse.ArgumentParser(description='TTS training')
parser.add_argument('--data_path', type=str, required=True, default='',
help='Directory contains preprocessed features.')
parser.add_argument('--preset', type=str, required=True, default='', help='Path of preset parameters (json).')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints_test',
help='Directory where to save model checkpoints [default: checkpoints].')
parser.add_argument('--checkpoint', type=str, default='', help='Restore model from checkpoint path if given.')
parser.add_argument('--speaker_id', type=str, default='',
help=' Use specific speaker of data in case for multi-speaker datasets.')
parser.add_argument('--platform', type=str, default='GPU', choices=('GPU', 'CPU'),
help='run platform, support GPU and CPU. Default: GPU')
parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training')
args = parser.parse_args()
if __name__ == '__main__':
if args.is_distributed:
init('nccl')
rank_id = get_rank()
group_size = get_group_size()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
else:
context.set_context(mode=context.GRAPH_MODE, device_target=args.platform, save_graphs=False)
rank_id = 0
group_size = 1
speaker_id = int(args.speaker_id) if args.speaker_id != '' else None
if args.preset is not None:
with open(args.preset) as f:
hparams.parse_json(f.read())
assert hparams.name == "wavenet_vocoder"
print(hparams_debug_string())
fs = hparams.sample_rate
os.makedirs(args.checkpoint_dir, exist_ok=True)
output_json_path = join(args.checkpoint_dir, "hparams.json")
with open(output_json_path, "w") as f:
json.dump(hparams.values(), f, indent=2)
data_loaders = get_data_loaders(args.data_path, args.speaker_id, hparams=hparams, rank_id=rank_id,
group_size=group_size)
step_size_per_epoch = data_loaders.get_dataset_size()
if is_mulaw_quantize(hparams.input_type):
if hparams.out_channels != hparams.quantize_channels:
raise RuntimeError(
"out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'")
if hparams.upsample_conditional_features and hparams.cin_channels < 0:
s = "Upsample conv layers were specified while local conditioning disabled. "
s += "Notice that upsample conv layers will never be used."
warn(s)
upsample_params = hparams.upsample_params
upsample_params["cin_channels"] = hparams.cin_channels
upsample_params["cin_pad"] = hparams.cin_pad
model = WaveNet(
out_channels=hparams.out_channels,
layers=hparams.layers,
stacks=hparams.stacks,
residual_channels=hparams.residual_channels,
gate_channels=hparams.gate_channels,
skip_out_channels=hparams.skip_out_channels,
cin_channels=hparams.cin_channels,
gin_channels=hparams.gin_channels,
n_speakers=hparams.n_speakers,
dropout=hparams.dropout,
kernel_size=hparams.kernel_size,
cin_pad=hparams.cin_pad,
upsample_conditional_features=hparams.upsample_conditional_features,
upsample_params=upsample_params,
scalar_input=is_scalar_input(hparams.input_type),
output_distribution=hparams.output_distribution,
)
loss_net = NetWithLossClass(model, hparams)
lr = get_lr(hparams.optimizer_params["lr"], hparams.nepochs, step_size_per_epoch)
lr = Tensor(lr)
if args.checkpoint != '':
param_dict = load_checkpoint(args.pre_trained_model_path)
load_param_into_net(model, param_dict)
print('Successfully loading the pre-trained model')
weights = model.trainable_params()
optimizer = Adam(weights, learning_rate=lr, loss_scale=1024.)
train_net = TrainOneStepCell(loss_net, optimizer)
model = Model(train_net)
lr_cb = Monitor(lr)
callback_list = [lr_cb]
if args.is_distributed:
ckpt_path = os.path.join(args.checkpoint_dir, 'ckpt_' + str(get_rank()) + '/')
else:
ckpt_path = args.checkpoint_dir
config_ck = CheckpointConfig(save_checkpoint_steps=step_size_per_epoch, keep_checkpoint_max=10)
ckpt_cb = ModelCheckpoint(prefix='wavenet', directory=ckpt_path, config=config_ck)
callback_list.append(ckpt_cb)
model.train(hparams.nepochs, data_loaders, callbacks=callback_list, dataset_sink_mode=False)