You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pynative_mode/test_cell_bprop.py

309 lines
11 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_cell_bprop """
import numpy as np
import mindspore.nn as nn
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore import Parameter
from mindspore.common.tensor import Tensor
import mindspore.common.dtype as mstype
from mindspore.common.initializer import initializer
from mindspore import context
from ....mindspore_test_framework.utils.bprop_util import bprop
import pytest
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
def construct(self, x, y):
return 2 * x + y
def bprop(self, x, y, out, dout):
# In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
return 2 * dout, 2 * y
def test_grad_mul_add():
mul_add = MulAdd()
assert C.grad_all(mul_add)(1, 2) == (2, 4)
class InlineMulADD(nn.Cell):
def __init__(self):
super(InlineMulADD, self).__init__()
self.mul_add = MulAdd()
self.param = Parameter(2, 'param')
def construct(self, x, y):
return self.mul_add(x, y) + x + self.param * y
def test_grad_inline_mul_add():
inline_mul_add = InlineMulADD()
assert C.grad_all(inline_mul_add)(1, 2) == (3, 6)
class WithParameter(nn.Cell):
def __init__(self):
super(WithParameter, self).__init__()
self.param = Parameter(2, 'param')
def construct(self, x, y):
return self.param * x + y
def bprop(self, x, y, out, dout):
# In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
return self.param * dout, 2 * y
def test_with_param():
with_param = WithParameter()
with pytest.raises(RuntimeError):
C.grad_all(with_param)(1, 2)
class WithNoBprop(nn.Cell):
def __init__(self):
super(WithNoBprop, self).__init__()
def construct(self, x, y):
return 2 * x + y
def test_with_no_bprop():
with_no_bprop = WithNoBprop()
C.grad_all(with_no_bprop)(1, 2) == (2, 1)
def test_grad_in_bprop_1():
class GradInBprop_1(nn.Cell):
def __init__(self):
super(GradInBprop_1, self).__init__()
self.relu = P.ReLU()
def construct(self, x, y):
return self.relu(x)
class GradInBprop_2(nn.Cell):
def __init__(self):
super(GradInBprop_2, self).__init__()
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
def __init__(self):
super(GradInBprop_3, self).__init__()
self.f = GradInBprop_2()
def construct(self, x, y):
return self.f(x, y)
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all()
def test_grad_in_bprop_2():
class GradInBprop_1(nn.Cell):
def __init__(self):
super(GradInBprop_1, self).__init__()
self.relu = P.ReLU()
def construct(self, x, y):
return self.relu(x)
def bprop(self, x, y, out, dout):
return x * y, y + x
class GradInBprop_2(nn.Cell):
def __init__(self):
super(GradInBprop_2, self).__init__()
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
def __init__(self):
super(GradInBprop_3, self).__init__()
self.f = GradInBprop_2()
def construct(self, x, y):
return self.f(x, y)
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all()
def test_grad_in_bprop_3():
class GradInBprop_1(nn.Cell):
def __init__(self):
super(GradInBprop_1, self).__init__()
self.relu = P.ReLU()
def construct(self, x, y):
return self.relu(x)
class GradInBprop_2(nn.Cell):
def __init__(self):
super(GradInBprop_2, self).__init__()
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
def __init__(self):
super(GradInBprop_3, self).__init__()
self.f = GradInBprop_2()
def construct(self, x, y):
return self.f(x, y)
def bprop(self, x, y, out, dout):
return x + y + y + out[0], x + x + y + y + dout[0]
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.array([[4, 4], [4, 4]]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[5, 5], [5, 5]]).astype(np.float32)).all()
class OneInputBprop(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.ReLU()
def construct(self, x):
return self.op(x)
def bprop(self, x, out, dout):
return 5 * x,
def test_grad_one_input_bprop():
net = OneInputBprop()
input = Tensor(np.ones([2, 2]).astype(np.float32))
grad = C.grad_all(net)(input)
assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all()
class TwoInput(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
return x * y
class InlineBpropTwoInput(nn.Cell):
def __init__(self):
super().__init__()
self.f = TwoInput()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
return grads[0] * 2, grads[1] * 2
def test_grad_inline_bprop_two_input():
net = InlineBpropTwoInput()
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
grads = C.grad_all(net)(input1, input2)
assert (grads[0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
assert (len(grads) == 2)
class TwoInputBprop(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
def construct(self, x, y):
return self.op(x, y)
def bprop(self, x, y, out, dout):
return 5 * x, 8 * y
class TwoInput(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
def construct(self, x, y):
return self.op(x, y)
class TwoInputWithParameter(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
self.inputdata = Parameter(initializer(1, (2,2), mstype.float32),name="global_step")
def construct(self, x, y):
x = self.inputdata + x
return self.op(x, y)
class TwoInputWithOnlyInitParameterBprop(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
self.inputdata = Parameter(initializer(1, (2,2), mstype.float32),name="global_step")
def construct(self, x, y):
return self.op(x, y)
def bprop(self, x, y, out, dout):
return 5*x, 8*y
class InlineMutilTwoInputParameterCell(nn.Cell):
def __init__(self):
super().__init__()
self.f1 = TwoInputBprop()
self.f2 = TwoInput()
self.f3 = TwoInputWithParameter()
self.f4 = TwoInputWithOnlyInitParameterBprop()
def construct(self, x, y):
output = self.f1(x,y)+self.f2(x,y)+self.f3(x,y)+self.f4(x,y)
return output
def test_grad_inline_bprop_multi_input():
net = InlineMutilTwoInputParameterCell()
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
grads = C.grad_all(net)(input1, input2)
assert (grads[0].asnumpy() == np.array([[12, 12], [12, 12]]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[19, 19], [19, 19]]).astype(np.float32)).all()
assert (len(grads) == 2)
class MulAddWithParam(nn.Cell):
def __init__(self):
super(MulAddWithParam, self).__init__()
self.mul_add = MulAdd()
self.param = Parameter(Tensor(np.array([[3, 2]], np.float32)), 'param')
def construct(self, x):
return self.mul_add(self.param, x)
def test_refkey_bprop():
net = MulAddWithParam()
input_data = Tensor(np.array([2, 2], np.float32))
grads = bprop(net, input_data,
grads_wrt_outputs=(Tensor(np.ones([1, 2]).astype(np.float32))),
wrt=['params', 'inputs'],
params=net.trainable_params())
assert (grads[0][0].asnumpy() == np.array([4, 4]).astype(np.float32)).all()
assert (grads[1][0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
class MulAddWithWrongOutputNum(nn.Cell):
def __init__(self):
super(MulAddWithWrongOutputNum, self).__init__()
def construct(self, x, y):
return 2 * x + y
def bprop(self, x, y, out, dout):
return 2 * dout, 2 * y, out
def test_grad_mul_add_with_wrong_output_num():
mul_add = MulAddWithWrongOutputNum()
with pytest.raises(RuntimeError):
C.grad_all(mul_add)(1, 2)