You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/rl/ldp_linucb/train_eval.py

90 lines
3.1 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
train/eval.
"""
import argparse
import time
import numpy as np
import matplotlib.pyplot as plt
from src.dataset import MovieLensEnv
from src.linucb import LinUCB
def parse_args():
"""parse args"""
parser = argparse.ArgumentParser()
parser.add_argument('--data_file', type=str, default='ua.base',
help='data file for movielens')
parser.add_argument('--rank_k', type=int, default=20,
help='rank for data matrix')
parser.add_argument('--num_actions', type=int, default=20,
help='movie number for choices')
parser.add_argument('--epsilon', type=float, default=8e5,
help='epsilon for differentially private')
parser.add_argument('--delta', type=float, default=1e-1,
help='delta for differentially private')
parser.add_argument('--alpha', type=float, default=1e-1,
help='failure probability')
parser.add_argument('--iter_num', type=float, default=1e6,
help='iteration number for training')
args_opt = parser.parse_args()
return args_opt
if __name__ == '__main__':
# build environment
args = parse_args()
env = MovieLensEnv(args.data_file, args.num_actions, args.rank_k)
# Linear UCB
lin_ucb = LinUCB(
args.rank_k,
epsilon=args.epsilon,
delta=args.delta,
alpha=args.alpha,
T=args.iter_num)
print('start')
start_time = time.time()
cumulative_regrets = []
for i in range(int(args.iter_num)):
x = env.observation()
rewards = env.current_rewards()
lin_ucb.update_status(i + 1)
xaxat, xay, max_a = lin_ucb(x, rewards)
cumulative_regrets.append(float(lin_ucb.regret))
lin_ucb.server_update(xaxat, xay)
diff = np.abs(lin_ucb.theta.asnumpy() - env.ground_truth).sum()
print(
f'--> Step: {i}, diff: {diff:.3f},'
f'current_regret: {lin_ucb.current_regret:.3f},'
f'cumulative regret: {lin_ucb.regret:.3f}')
end_time = time.time()
print(f'Regret: {lin_ucb.regret}, cost time: {end_time-start_time:.3f}s')
print(f'theta: {lin_ucb.theta.asnumpy()}')
print(f' gt: {env.ground_truth}')
np.save(f'e_{args.epsilon:.1e}.npy', cumulative_regrets)
plt.plot(
range(len(cumulative_regrets)),
cumulative_regrets,
label=f'epsilon={args.epsilon:.1e}')
plt.legend()
plt.savefig(f'regret_{args.epsilon:.1e}.png')