You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
6.2 KiB
220 lines
6.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
@File : test_image_summary.py
|
|
@Author:
|
|
@Date : 2019-07-4
|
|
@Desc : test summary function
|
|
"""
|
|
import logging
|
|
import os
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import Model, context
|
|
from mindspore import Tensor
|
|
from mindspore.nn.optim import Momentum
|
|
from mindspore.train.summary.summary_record import SummaryRecord, _cache_summary_tensor_data
|
|
from mindspore.train.callback import Callback
|
|
from .....dataset_mock import MindData
|
|
|
|
CUR_DIR = os.getcwd()
|
|
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
|
|
|
log = logging.getLogger("test")
|
|
log.setLevel(level=logging.ERROR)
|
|
|
|
|
|
def make_image_tensor(shape, dtype=float):
|
|
""" make_image_tensor """
|
|
# pylint: disable=unused-argument
|
|
numel = np.prod(shape)
|
|
x = (np.arange(numel, dtype=float)).reshape(shape)
|
|
return x
|
|
|
|
|
|
def get_test_data(step):
|
|
""" get_test_data """
|
|
test_data_list = []
|
|
tag1 = "x1[:Image]"
|
|
tag2 = "x2[:Image]"
|
|
np1 = make_image_tensor([2, 3, 8, 8])
|
|
np2 = make_image_tensor([step, 3, 8, 8])
|
|
|
|
dict1 = {}
|
|
dict1["name"] = tag1
|
|
dict1["data"] = Tensor(np1)
|
|
|
|
dict2 = {}
|
|
dict2["name"] = tag2
|
|
dict2["data"] = Tensor(np2)
|
|
|
|
test_data_list.append(dict1)
|
|
test_data_list.append(dict2)
|
|
|
|
return test_data_list
|
|
|
|
|
|
# Test: call method on parse graph code
|
|
def test_image_summary_sample():
|
|
""" test_image_summary_sample """
|
|
log.debug("begin test_image_summary_sample")
|
|
# step 0: create the thread
|
|
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
|
|
# step 1: create the test data for summary
|
|
|
|
# step 2: create the Event
|
|
for i in range(1, 5):
|
|
test_data = get_test_data(i)
|
|
_cache_summary_tensor_data(test_data)
|
|
test_writer.record(i)
|
|
test_writer.flush()
|
|
|
|
# step 3: send the event to mq
|
|
|
|
# step 4: accept the event and write the file
|
|
log.debug("finished test_image_summary_sample")
|
|
|
|
|
|
class Net(nn.Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal',
|
|
pad_mode='valid')
|
|
self.bn = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU()
|
|
self.flatten = nn.Flatten()
|
|
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
|
|
|
|
def construct(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
x = self.flatten(x)
|
|
out = self.fc(x)
|
|
return out
|
|
|
|
|
|
class LossNet(nn.Cell):
|
|
""" LossNet definition """
|
|
|
|
def __init__(self):
|
|
super(LossNet, self).__init__()
|
|
self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal',
|
|
pad_mode='valid')
|
|
self.bn = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU()
|
|
self.flatten = nn.Flatten()
|
|
self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
def construct(self, x, y):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
x = self.flatten(x)
|
|
x = self.fc(x)
|
|
out = self.loss(x, y)
|
|
return out
|
|
|
|
|
|
def get_model():
|
|
""" get_model """
|
|
net = Net()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
|
return model
|
|
|
|
|
|
def get_dataset():
|
|
""" get_dataset """
|
|
dataset_types = (np.float32, np.float32)
|
|
dataset_shapes = ((2, 3, 224, 224), (2, 3))
|
|
|
|
dataset = MindData(size=2, batch_size=2,
|
|
np_types=dataset_types,
|
|
output_shapes=dataset_shapes,
|
|
input_indexs=(0, 1))
|
|
return dataset
|
|
|
|
|
|
class ImageSummaryCallback(Callback):
|
|
"""Image summary callback."""
|
|
|
|
def __init__(self, summary_record):
|
|
self._summary_record = summary_record
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *err):
|
|
self._summary_record.close()
|
|
|
|
def record(self, step, train_network=None):
|
|
"""record data."""
|
|
self._summary_record.record(step, train_network)
|
|
self._summary_record.flush()
|
|
|
|
|
|
def test_image_summary_train():
|
|
""" test_image_summary_train """
|
|
dataset = get_dataset()
|
|
|
|
log.debug("begin test_image_summary_sample")
|
|
# step 0: create the thread
|
|
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
|
|
# step 1: create the test data for summary
|
|
|
|
# step 2: create the Event
|
|
|
|
model = get_model()
|
|
callback = ImageSummaryCallback(test_writer)
|
|
model.train(2, dataset, callbacks=[callback])
|
|
|
|
# step 3: send the event to mq
|
|
|
|
# step 4: accept the event and write the file
|
|
log.debug("finished test_image_summary_sample")
|
|
|
|
|
|
def test_image_summary_data():
|
|
""" test_image_summary_data """
|
|
dataset = get_dataset()
|
|
|
|
test_data_list = []
|
|
i = 1
|
|
for next_element in dataset:
|
|
tag = "image_" + str(i) + "[:Image]"
|
|
dct = {}
|
|
dct["name"] = tag
|
|
dct["data"] = Tensor(next_element[0])
|
|
test_data_list.append(dct)
|
|
i += 1
|
|
|
|
log.debug("begin test_image_summary_sample")
|
|
# step 0: create the thread
|
|
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_IMAGE") as test_writer:
|
|
# step 1: create the test data for summary
|
|
|
|
# step 2: create the Event
|
|
_cache_summary_tensor_data(test_data_list)
|
|
test_writer.record(1)
|
|
|
|
log.debug("finished test_image_summary_sample")
|