You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_callbacks.py

503 lines
17 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from builtins import range, super
import time
import pytest
from mindspore import context
from mindspore import log as logger
from mindspore.dataset.callback import DSCallback, WaitedDSCallback
from mindspore.train import Model
from mindspore.train.callback import Callback
import mindspore.dataset as ds
import mindspore.nn as nn
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class BaseCallback(DSCallback):
def __init__(self, step_size=1, events=None, cb_id=0):
super().__init__(step_size)
self.events = events
self.cb_id = cb_id
def append(self, event_name, ds_run_context):
event = [event_name, ds_run_context.cur_epoch_num,
ds_run_context.cur_step_num_in_epoch, ds_run_context.cur_step_num]
event = '_'.join([str(e) for e in event])
index = -1
for i, e in enumerate(self.events):
if e[0] == event:
index = i
break
if index != -1:
self.events[index][1].append(self.cb_id)
else:
self.events.append((event, [self.cb_id]))
class Begin(BaseCallback):
def ds_begin(self, ds_run_context):
self.append("begin", ds_run_context)
class EpochBegin(BaseCallback):
def ds_epoch_begin(self, ds_run_context):
self.append("epoch_begin", ds_run_context)
class EpochEnd(BaseCallback):
def ds_epoch_end(self, ds_run_context):
self.append("epoch_end", ds_run_context)
class StepBegin(BaseCallback):
def ds_step_begin(self, ds_run_context):
self.append("step_begin", ds_run_context)
class StepEnd(BaseCallback):
def ds_step_end(self, ds_run_context):
self.append("step_end", ds_run_context)
class MyDSCallback(Begin, EpochBegin, EpochEnd, StepBegin, StepEnd):
pass
def generate_expected(epoch_num, step_num, step_size=1, map_num=1, repeat=1):
events = []
cb_id = list(range(map_num))
def append(name, e, s):
event = [name, e + 1, s + 1, e * step_num * repeat + s + 1]
event = '_'.join([str(ev) for ev in event])
events.append((event, cb_id))
events.append(("begin_0_0_0", cb_id))
for e in range(epoch_num):
append("epoch_begin", e, -1)
for s in range(step_num * repeat):
if s % step_size == 0:
append("step_begin", e, s)
append("step_end", e, s)
append("epoch_end", e, step_num * repeat - 1)
return events
def build_test_case_1cb(epochs, steps, step_size=1, repeat=1):
events = []
arr = list(range(1, steps + 1))
data = ds.NumpySlicesDataset(arr, shuffle=False)
my_cb = MyDSCallback(step_size=step_size, events=events)
data = data.map(operations=(lambda x: x), callbacks=my_cb)
if repeat != 1:
if repeat % 2 == 0 and repeat != 2:
data = data.repeat(2)
data = data.map(operations=(lambda x: x))
data = data.repeat(repeat // 2)
else:
data = data.repeat(repeat)
itr = data.create_tuple_iterator(num_epochs=epochs)
for _ in range(epochs):
for _ in itr:
pass
expected_events = generate_expected(epochs, steps, step_size, 1, repeat)
assert expected_events == events
def build_test_case_2cbs(epochs, steps):
events1 = []
events2 = []
my_cb1 = MyDSCallback(events=events1)
my_cb2 = MyDSCallback(events=events2)
arr = list(range(1, steps + 1))
data = ds.NumpySlicesDataset(arr, shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=[my_cb1, my_cb2])
itr = data.create_tuple_iterator(num_epochs=epochs)
for _ in range(epochs):
for _ in itr:
pass
expected_events = generate_expected(epochs, steps)
assert expected_events == events1
assert expected_events == events2
def build_test_case_2maps(epochs, steps):
events = []
my_cb1 = MyDSCallback(events=events, cb_id=0)
my_cb2 = MyDSCallback(events=events, cb_id=1)
arr = list(range(1, steps + 1))
data = ds.NumpySlicesDataset(arr, shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb1)
data = data.map(operations=(lambda x: x), callbacks=my_cb2)
itr = data.create_tuple_iterator(num_epochs=epochs)
for _ in range(epochs):
for _ in itr:
pass
expected_events = generate_expected(epochs, steps, map_num=2)
assert expected_events[1:] == events[1:]
for event in events:
assert len(event) == 2
event, cb_ids = event
if event != "begin_0_0_0":
assert cb_ids[0] == 0
assert cb_ids[1] == 1
def test_callbacks_all_methods():
logger.info("test_callbacks_all_methods")
build_test_case_1cb(1, 1)
build_test_case_1cb(1, 2)
build_test_case_1cb(1, 3)
build_test_case_1cb(1, 4)
build_test_case_1cb(2, 1)
build_test_case_1cb(2, 2)
build_test_case_1cb(2, 3)
build_test_case_1cb(2, 4)
build_test_case_1cb(3, 1)
build_test_case_1cb(3, 2)
build_test_case_1cb(3, 3)
build_test_case_1cb(3, 4)
def test_callbacks_var_step_size():
logger.info("test_callbacks_var_step_size")
build_test_case_1cb(1, 2, 2)
build_test_case_1cb(1, 3, 2)
build_test_case_1cb(1, 4, 2)
build_test_case_1cb(2, 2, 2)
build_test_case_1cb(2, 3, 2)
build_test_case_1cb(2, 4, 2)
build_test_case_1cb(3, 2, 2)
build_test_case_1cb(3, 3, 2)
build_test_case_1cb(3, 4, 2)
def test_callbacks_all_2cbs():
logger.info("test_callbacks_all_2cbs")
build_test_case_2cbs(4, 1)
build_test_case_2cbs(4, 2)
build_test_case_2cbs(4, 3)
build_test_case_2cbs(4, 4)
class MyWaitedCallback(WaitedDSCallback):
def __init__(self, events, step_size=1):
super().__init__(step_size)
self.events = events
def sync_epoch_begin(self, train_run_context, ds_run_context):
event = f"ds_epoch_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}"
self.events.append(event)
def sync_step_begin(self, train_run_context, ds_run_context):
event = f"ds_step_begin_{ds_run_context.cur_epoch_num}_{ds_run_context.cur_step_num}"
self.events.append(event)
class MyMSCallback(Callback):
def __init__(self, events):
self.events = events
def epoch_end(self, run_context):
cb_params = run_context.original_args()
event = f"ms_epoch_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}"
self.events.append(event)
def step_end(self, run_context):
cb_params = run_context.original_args()
event = f"ms_step_end_{cb_params.cur_epoch_num}_{cb_params.cur_step_num}"
self.events.append(event)
class Net(nn.Cell):
def construct(self, x, y):
return x
def test_callbacks_non_sink():
logger.info("test_callbacks_non_sink")
events = []
my_cb1 = MyWaitedCallback(events, 1)
my_cb2 = MyMSCallback(events)
arr = [1, 2, 3, 4]
data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb1)
net = Net()
model = Model(net)
model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3',
'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4',
'ms_epoch_end_1_4', 'ds_epoch_begin_2_4',
'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6',
'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8',
'ms_step_end_2_8', 'ms_epoch_end_2_8']
assert events[:18] == expected_synced_events
def test_callbacks_non_sink_batch_size2():
logger.info("test_callbacks_non_sink_batch_size2")
events = []
my_cb1 = MyWaitedCallback(events, 2)
my_cb2 = MyMSCallback(events)
arr = [1, 2, 3, 4]
data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb1)
data = data.batch(2)
net = Net()
model = Model(net)
model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_3',
'ms_step_end_1_2',
'ms_epoch_end_1_2', 'ds_epoch_begin_2_4',
'ds_step_begin_2_5', 'ms_step_end_2_3', 'ds_step_begin_2_7',
'ms_step_end_2_4', 'ms_epoch_end_2_4']
assert events[:10] == expected_synced_events
def test_callbacks_non_sink_mismatch_size():
logger.info("test_callbacks_non_sink_mismatch_size")
default_timeout = ds.config.get_callback_timeout()
ds.config.set_callback_timeout(1)
events = []
my_cb1 = MyWaitedCallback(events, 2)
my_cb2 = MyMSCallback(events)
arr = [1, 2, 3, 4]
data = ds.NumpySlicesDataset((arr, arr), column_names=["c1", "c2"], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb1)
data = data.batch(3)
net = Net()
model = Model(net)
with pytest.raises(Exception) as err:
model.train(2, data, dataset_sink_mode=False, callbacks=[my_cb2, my_cb1])
assert "RuntimeError: ds_step_begin timed out after 1 second(s)" in str(err.value)
ds.config.set_callback_timeout(default_timeout)
def test_callbacks_validations():
logger.info("test_callbacks_validations")
with pytest.raises(Exception) as err:
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data.map(operations=(lambda x: x), callbacks=0)
assert "Argument callbacks with value 0 is not " in str(err.value)
with pytest.raises(Exception) as err:
my_cb1 = MyDSCallback()
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data.map(operations=(lambda x: x), callbacks=[my_cb1, 0])
assert "Argument callbacks[1] with value 0 is not " in str(err.value)
with pytest.raises(Exception) as err:
class BadCB(DSCallback):
pass
my_cb = BadCB()
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb)
for _ in data:
pass
assert "Provided Callback class did not override any of the 6 callback methods." in str(err.value)
def test_callbacks_sink_simulation():
logger.info("test_callback_sink_simulation")
events = []
epochs = 2
my_cb = MyWaitedCallback(events, 1)
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=my_cb)
data = data.to_device()
data.send(num_epochs=epochs)
for e in range(epochs):
for s in range(4):
time.sleep(0.5)
events.append(f"ms_step_end_{e + 1}_{e * 4 + s + 1}")
my_cb.step_end(run_context=0)
events.append(f"ms_epoch_end_{e + 1}_{(e + 1) * 4}")
my_cb.epoch_end(run_context=0)
expected_synced_events = ['ms_step_end_1_1', 'ds_step_begin_1_2', 'ms_step_end_1_2', 'ds_step_begin_1_3',
'ms_step_end_1_3', 'ds_step_begin_1_4', 'ms_step_end_1_4',
'ms_epoch_end_1_4', 'ds_epoch_begin_2_4',
'ds_step_begin_2_5', 'ms_step_end_2_5', 'ds_step_begin_2_6',
'ms_step_end_2_6', 'ds_step_begin_2_7', 'ms_step_end_2_7', 'ds_step_begin_2_8',
'ms_step_end_2_8', 'ms_epoch_end_2_8']
assert events == expected_synced_events
def test_callbacks_repeat():
logger.info("test_callbacks_repeat")
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=3)
build_test_case_1cb(epochs=2, steps=2, step_size=2, repeat=3)
build_test_case_1cb(epochs=3, steps=2, step_size=4, repeat=3)
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=2)
build_test_case_1cb(epochs=2, steps=2, step_size=1, repeat=4)
build_test_case_1cb(epochs=2, steps=2, step_size=2, repeat=8)
build_test_case_1cb(epochs=3, steps=2, step_size=4, repeat=16)
def test_callbacks_exceptions():
logger.info("test_callbacks_exceptions")
class BadCB(DSCallback):
def ds_begin(self, ds_run_context):
raise RuntimeError("Bad begin")
with pytest.raises(Exception) as err:
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=BadCB())
for _ in data:
pass
assert "RuntimeError: Bad begin" in str(err.value)
def test_callbacks_train_end():
logger.info("test_callback_sink_simulation")
# No asserts are needed, just test there is no deadlock or exceptions
events = []
epochs = 2
my_cb = MyWaitedCallback(events, 1)
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
data = data.map(operations=(lambda x: x), callbacks=[my_cb])
data = data.to_device()
data.send(num_epochs=epochs)
time.sleep(0.5)
my_cb.end(run_context={})
time.sleep(0.5)
def test_callbacks_one_cb():
logger.info("test_callbacks_one_cb")
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
events1 = []
events2 = []
events3 = []
my_begin = Begin(events=events1, cb_id=1)
my_epoch_begin = EpochBegin(events=events2, cb_id=2)
my_epoch_end = EpochEnd(events=events3, cb_id=3)
my_step_begin = StepBegin(events=events3, cb_id=3)
my_step_end = StepEnd(events=events2, cb_id=2)
data = data.map(operations=(lambda x: x), callbacks=my_begin)
data = data.map(operations=(lambda x: x), callbacks=[my_epoch_begin, my_step_end])
data = data.map(operations=(lambda x: x), callbacks=[my_epoch_end, my_step_begin])
itr = data.create_tuple_iterator(num_epochs=2)
for _ in range(2):
for _ in itr:
pass
expected_events1 = [('begin_0_0_0', [1])]
expected_events2 = [('epoch_begin_1_0_0', [2]), ('step_end_1_1_1', [2]), ('step_end_1_2_2', [2]),
('step_end_1_3_3', [2]), ('step_end_1_4_4', [2]), ('epoch_begin_2_0_4', [2]),
('step_end_2_1_5', [2]), ('step_end_2_2_6', [2]), ('step_end_2_3_7', [2]),
('step_end_2_4_8', [2])]
expected_events3 = [('step_begin_1_1_1', [3]), ('step_begin_1_2_2', [3]), ('step_begin_1_3_3', [3]),
('step_begin_1_4_4', [3]), ('epoch_end_1_4_4', [3]), ('step_begin_2_1_5', [3]),
('step_begin_2_2_6', [3]), ('step_begin_2_3_7', [3]), ('step_begin_2_4_8', [3]),
('epoch_end_2_4_8', [3])]
assert events1 == expected_events1
assert events2 == expected_events2
assert events3 == expected_events3
def test_clear_callback():
logger.info("test_clear_callback")
# this test case will test that callback is removed for get_dataset_size and output_shape/type
class FlagCallback(DSCallback):
def __init__(self):
super().__init__(step_size=1)
self.flag = False
self.row_cnt = 0
def ds_begin(self, ds_run_context):
# if callback isn't removed in getter pass, this function will be called
self.flag = True
def ds_step_begin(self, ds_run_context):
self.row_cnt += 1
data = ds.NumpySlicesDataset([1, 2, 3, 4], shuffle=False)
cb = FlagCallback()
# make sure variables are properly initialized before testing
assert not cb.flag and cb.row_cnt == 0
data = data.map(operations=(lambda x: x), callbacks=cb)
assert data.get_dataset_size() == 4
assert data.output_shapes() == [[]]
# make sure callback is never called by checking flag and row_cnt
assert not cb.flag and cb.row_cnt == 0
for _ in data.create_dict_iterator(num_epochs=1):
pass
# this ensure that callback is indeed called
assert cb.flag and cb.row_cnt == 4
if __name__ == '__main__':
test_callbacks_all_2cbs()
test_callbacks_all_methods()
test_callbacks_exceptions()
test_callbacks_repeat()
test_callbacks_sink_simulation()
test_callbacks_validations()
test_callbacks_var_step_size()
test_callbacks_non_sink_batch_size2()
test_callbacks_non_sink()
test_callbacks_one_cb()
test_callbacks_non_sink_mismatch_size()
test_callbacks_train_end()
test_clear_callback()