You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/yolov4/postprocess.py

99 lines
3.6 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""YoloV4 310 infer."""
import os
import argparse
import datetime
import time
import numpy as np
from pycocotools.coco import COCO
from src.logger import get_logger
from eval import DetectionEngine
parser = argparse.ArgumentParser('mindspore coco testing')
# dataset related
parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu')
# logging related
parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location')
# detect_related
parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS')
parser.add_argument('--ann_file', type=str, default='', help='path to annotation')
parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes')
parser.add_argument('--img_id_file_path', type=str, default='', help='path of image dataset')
parser.add_argument('--result_files', type=str, default='./result_Files', help='path to 310 infer result floder')
args, _ = parser.parse_known_args()
class Redirct:
def __init__(self):
self.content = ""
def write(self, content):
self.content += content
def flush(self):
self.content = ""
if __name__ == "__main__":
start_time = time.time()
args.outputs_dir = os.path.join(args.log_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
args.logger = get_logger(args.outputs_dir, 0)
# init detection engine
detection = DetectionEngine(args)
coco = COCO(args.ann_file)
result_path = args.result_files
files = os.listdir(args.img_id_file_path)
for file in files:
img_ids_name = file.split('.')[0]
img_id = int(np.squeeze(img_ids_name))
imgIds = coco.getImgIds(imgIds=[img_id])
img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0]
image_shape = ((img['width'], img['height']),)
img_id = (np.squeeze(img_ids_name),)
result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin")
result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin")
result_path_2 = os.path.join(result_path, img_ids_name + "_2.bin")
output_small = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 19, 19, 3, 85)
output_me = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 38, 38, 3, 85)
output_big = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 76, 76, 3, 85)
detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, img_id)
args.logger.info('Calculating mAP...')
detection.do_nms_for_results()
result_file_path = detection.write_result()
args.logger.info('result file path: {}'.format(result_file_path))
eval_result = detection.get_eval_result()
cost_time = time.time() - start_time
args.logger.info('\n=============coco eval reulst=========\n' + eval_result)
args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.))