You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_autocontrast.py

350 lines
15 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing AutoContrast op in DE
"""
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.py_transforms as F
import mindspore.dataset.vision.c_transforms as C
from mindspore import log as logger
from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
DATA_DIR = "../data/dataset/testImageNetData/train/"
MNIST_DATA_DIR = "../data/dataset/testMnistData"
GENERATE_GOLDEN = False
def test_auto_contrast_py(plot=False):
"""
Test AutoContrast
"""
logger.info("Test AutoContrast Python Op")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
else:
images_original = np.append(images_original,
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
axis=0)
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_auto_contrast = \
mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
F.ToTensor()])
ds_auto_contrast = ds.map(operations=transforms_auto_contrast, input_columns="image")
ds_auto_contrast = ds_auto_contrast.batch(512)
for idx, (image, _) in enumerate(ds_auto_contrast):
if idx == 0:
images_auto_contrast = np.transpose(image.asnumpy(), (0, 2, 3, 1))
else:
images_auto_contrast = np.append(images_auto_contrast,
np.transpose(image.asnumpy(), (0, 2, 3, 1)),
axis=0)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
# Compare with expected md5 from images
filename = "autocontrast_01_result_py.npz"
save_and_check_md5(ds_auto_contrast, filename, generate_golden=GENERATE_GOLDEN)
if plot:
visualize_list(images_original, images_auto_contrast)
def test_auto_contrast_c(plot=False):
"""
Test AutoContrast C Op
"""
logger.info("Test AutoContrast C Op")
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
python_op,
np.array])
ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
for idx, (image, _) in enumerate(ds_auto_contrast_py):
if idx == 0:
images_auto_contrast_py = image.asnumpy()
else:
images_auto_contrast_py = np.append(images_auto_contrast_py,
image.asnumpy(),
axis=0)
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
for idx, (image, _) in enumerate(ds_auto_contrast_c):
if idx == 0:
images_auto_contrast_c = image.asnumpy()
else:
images_auto_contrast_c = np.append(images_auto_contrast_c,
image.asnumpy(),
axis=0)
num_samples = images_auto_contrast_c.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
np.testing.assert_equal(np.mean(mse), 0.0)
# Compare with expected md5 from images
filename = "autocontrast_01_result_c.npz"
save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
if plot:
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
def test_auto_contrast_one_channel_c(plot=False):
"""
Test AutoContrast C op with one channel
"""
logger.info("Test AutoContrast C Op With One Channel Images")
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
python_op = F.AutoContrast()
c_op = C.AutoContrast()
# not using F.ToTensor() since it converts to floats
transforms_op = mindspore.dataset.transforms.py_transforms.Compose(
[lambda img: (np.array(img)[:, :, 0]).astype(np.uint8),
F.ToPIL(),
python_op,
np.array])
ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
for idx, (image, _) in enumerate(ds_auto_contrast_py):
if idx == 0:
images_auto_contrast_py = image.asnumpy()
else:
images_auto_contrast_py = np.append(images_auto_contrast_py,
image.asnumpy(),
axis=0)
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
input_columns=["image"])
ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
for idx, (image, _) in enumerate(ds_auto_contrast_c):
if idx == 0:
images_auto_contrast_c = image.asnumpy()
else:
images_auto_contrast_c = np.append(images_auto_contrast_c,
image.asnumpy(),
axis=0)
num_samples = images_auto_contrast_c.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_auto_contrast_c[i], images_auto_contrast_py[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
np.testing.assert_equal(np.mean(mse), 0.0)
if plot:
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
def test_auto_contrast_mnist_c(plot=False):
"""
Test AutoContrast C op with MNIST dataset (Grayscale images)
"""
logger.info("Test AutoContrast C Op With MNIST Images")
ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_auto_contrast_c = ds.map(operations=C.AutoContrast(cutoff=1, ignore=(0, 255)), input_columns="image")
ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
images = []
images_trans = []
labels = []
for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)):
image_orig, label_orig = data_orig
image_trans, _ = data_trans
images.append(image_orig.asnumpy())
labels.append(label_orig.asnumpy())
images_trans.append(image_trans.asnumpy())
# Compare with expected md5 from images
filename = "autocontrast_mnist_result_c.npz"
save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
if plot:
visualize_one_channel_dataset(images, images_trans, labels)
def test_auto_contrast_invalid_ignore_param_c():
"""
Test AutoContrast C Op with invalid ignore parameter
"""
logger.info("Test AutoContrast C Op with invalid ignore parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(ignore=255.5), input_columns="image")
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(ignore=(10, 100)), input_columns="image")
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)
def test_auto_contrast_invalid_cutoff_param_c():
"""
Test AutoContrast C Op with invalid cutoff parameter
"""
logger.info("Test AutoContrast C Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(cutoff=-10.0), input_columns="image")
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(cutoff=120.0), input_columns="image")
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
def test_auto_contrast_invalid_ignore_param_py():
"""
Test AutoContrast python Op with invalid ignore parameter
"""
logger.info("Test AutoContrast python Op with invalid ignore parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=255.5),
F.ToTensor()])],
input_columns=["image"])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=(10, 100)),
F.ToTensor()])],
input_columns=["image"])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)
def test_auto_contrast_invalid_cutoff_param_py():
"""
Test AutoContrast python Op with invalid cutoff parameter
"""
logger.info("Test AutoContrast python Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=-10.0),
F.ToTensor()])],
input_columns=["image"])
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(
operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=120.0),
F.ToTensor()])],
input_columns=["image"])
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
if __name__ == "__main__":
test_auto_contrast_py(plot=True)
test_auto_contrast_c(plot=True)
test_auto_contrast_one_channel_c(plot=True)
test_auto_contrast_mnist_c(plot=True)
test_auto_contrast_invalid_ignore_param_c()
test_auto_contrast_invalid_ignore_param_py()
test_auto_contrast_invalid_cutoff_param_c()
test_auto_contrast_invalid_cutoff_param_py()