You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_soft_dvpp.py

126 lines
5.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing soft dvpp SoftDvppDecodeResizeJpeg and SoftDvppDecodeRandomCropResizeJpeg in DE
"""
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore import log as logger
from util import diff_mse, visualize_image
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_soft_dvpp_decode_resize_jpeg(plot=False):
"""
Test SoftDvppDecodeResizeJpeg op
"""
logger.info("test_random_decode_resize_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
resize_op = vision.Resize((256, 512))
data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg((256, 512))
data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
image1 = item1["image"]
image2 = item2["image"]
mse = diff_mse(image1, image2)
assert mse <= 0.02
logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
if plot:
visualize_image(image1, image2, mse)
num_iter += 1
def test_soft_dvpp_decode_random_crop_resize_jpeg(plot=False):
"""
Test SoftDvppDecodeRandomCropResizeJpeg op
"""
logger.info("test_random_decode_resize_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_decode_resize_op = vision.RandomCropDecodeResize((256, 512), (1, 1), (0.5, 0.5))
data1 = data1.map(operations=random_crop_decode_resize_op, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
soft_dvpp_random_crop_decode_resize_op = vision.SoftDvppDecodeRandomCropResizeJpeg((256, 512), (1, 1), (0.5, 0.5))
data2 = data2.map(operations=soft_dvpp_random_crop_decode_resize_op, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
image1 = item1["image"]
image2 = item2["image"]
mse = diff_mse(image1, image2)
assert mse <= 0.06
logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
if plot:
visualize_image(image1, image2, mse)
num_iter += 1
def test_soft_dvpp_decode_resize_jpeg_supplement(plot=False):
"""
Test SoftDvppDecodeResizeJpeg op
"""
logger.info("test_random_decode_resize_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
resize_op = vision.Resize(1134)
data1 = data1.map(operations=[decode_op, resize_op], input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
soft_dvpp_decode_resize_op = vision.SoftDvppDecodeResizeJpeg(1134)
data2 = data2.map(operations=soft_dvpp_decode_resize_op, input_columns=["image"])
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
if num_iter > 0:
break
image1 = item1["image"]
image2 = item2["image"]
mse = diff_mse(image1, image2)
assert mse <= 0.02
logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
if plot:
visualize_image(image1, image2, mse)
num_iter += 1
if __name__ == "__main__":
test_soft_dvpp_decode_resize_jpeg(plot=True)
test_soft_dvpp_decode_random_crop_resize_jpeg(plot=True)
test_soft_dvpp_decode_resize_jpeg_supplement(plot=True)